MET CS 669 Database Design and Implementation for Business
Term Project Iteration 5

MyKids-ChecklIn Project Direction Overview

| would like to develop an app that automates the Children’s Ministry Check in process for each
service at my church. When all the parties involved use the app, different parties will be able to
have access to different information. Team leaders will be able to have the history of every
person that has volunteered and a list of all the children that have attended a specific date and
time and in what age groups. Teacher/Volunteers will be able to have access to important
information regarding the children checked in to their classroom, like medical alerts, custodial,
pickup authorized list information, notes, etc. Team leaders will be able to manage classrooms
better by having current information on the total of children in each classroom and limiting the
max # of children to stay in compliance with fire code regulations.

Here are some examples of how the application would be used. The team leader will set up the
classrooms in the app and assign the available volunteers to have the classroom ready to check
in. Once classrooms are setup (usually 15 minutes prior to the service start time), parents will
come to a kiosk and type in their previously registered phone number which will display the list
of children they have registered. The app will print out the badges for their children, one badge
per child and one for the parent. The badge will have the child’s name, age group, and QR code.
Parents will go to a classroom assigned to their child’s age group, and the Teacher/Volunteer will
scan the child’s badge to check them into their classroom. After service has ended, parents will
check out their child by bringing the parent badge to be scanned by the teacher. The app will
validate that the QR codes of the parent and child match.

Since all this information is being tracked in the app, Team leaders will be able to pull up the
classroom’s current list, they will also be able to know the exact location of a child, and the exact
time a child was picked up. The database will also store information about the family and
children, like home address, phone number, driver’s license, children’s age, any alert information
(medical, custodial, special needs, etc.), and pick-up list. It will store information about the
different, age groups, classrooms assigned to a specific age group and volunteers’ information. It
will save the Check-in and check-out date and time, classroom and any notes entered by the
volunteers.

The reason | picked this project is that | have volunteered as a teacher and | am also a parent of
2 precious kids which are part of the children’s ministries. The church currently has an app which
has a mixture of an automated and manual process. | understand the need as a volunteer and as
a parent to have an app that will completely automate the current process.

Project Iteration 2: Revision of the Project Direction Overview

Page 1 of 58

Our church has different campuses in different locations, which creates the need to keep track
of what campus a person is attending. Because of this, | added another example of how the
application would be used.

The Admin Team will be able to enter information of all the different campuses and register all
the service/events happening in a specific campus. They will also maintain information regarding
the different buildings and the rooms that can be assigned to an event (e.g., Children’s Ministry
event) They will be able to schedule specific events allowing a person to register in these events,
before a check-in process starts.

MyKids-Checkln Use Cases and Fields

One important usage of the database is when a person registers their family members.
New Family Registration Use Case

1. The parent/guardian visits the kiosk located where the app is installed.

2. The parent/guardian will click on the “Create New Family” option.

3. The parent/guardian selects the campus they usually attend to, to then proceed to
enter all the required information for them and the child/children and the new family is
created in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the
current service/event. If they select yes, the app will printout the badges that will be
used in the check-in and check-out process.

From the database perspective, this use case requires storing information about the new
family (from steps #2 and #3) and information about the printed badges for the current
service/event (step #4). Steps #1 apply to the user but not the database directly.

Parent/Guardian Fields

Fields What it stores Why it’s Needed.
FirstName This is the first name of the | This is necessary for
parent/guardian. displaying the

parent/guardian’s name on
the app or used for
addressing any
communication.

LastName This is the last name of the | This is necessary for
parent/guardian. displaying the
parent/guardian’s last
name on the app or used
for addressing any
communication.

Page 2 of 58

PhoneNumber

This is the phone number of
the parent/guardian.

This is necessary to use it to
contact the parent by
sending them text or calling
them if any issue with their
child arises.

Address1 This is the address 1 of the | This is used for sending out
parent/guardian. mail to the
parent/guardian.
Address2 This is the address 2 of the | This is used for sending out

parent/guardian.

mail to the
parent/guardian.

Page 3 of 58

Fields

What it stores

Why it’s Needed.

City This is the city of the This is used for sending out
parent/guardian. mail to the
parent/guardian.
State This is the state of the This is used for sending out
parent/guardian. mail to the
parent/guardian.
ZipCode This is the zip code of the This is used for sending out
parent/guardian. mail to the
parent/guardian.
Email This is the email of the This is used for sending out

parent/guardian.

email to the
parent/guardian.

IdentificationNumber

This is the
parent/guardian’s
identification number
(Driver’s license, state id,
etc.)

This is useful when we need
to verify the person is the
parent/guardian, in the
case where they misplaced
the pick-up badge.

IdentificationType

This is the type of
identification number the
parent/guardian has
provided. (Driver’s license,
state id, etc.)

This is useful (in
conjunction with the
identification number)
when we need to verify the
person is the
parent/guardian, in the
case where they misplaced
the pick-up badge.

RelationshipToKid

This is the type of
relationship they have with
the child. Examples are:
parent, grandparent, step-
parent, foster-parent, aunt,
etc.

This is useful when
addressing communication.

DateOfBirth

This is the date of birth of
the parent/guardian.

This is useful to send out
Happy Birthday emails to
the parent/guardian or any
other communication that
can be age specific.

MaritalStatus

This is the marital status of
the parent/guardian.

This is very useful for
discipleship.

Gender

This is the gender of the
parent/guardian.

This is useful to personalize
communications and send
out emails depending on
gender group events.

Page 4 of 58

Fields What it stores Why it’s Needed.
Campus This is the campus the This is used to know what
parent attends regularly. campus a parent usually
attends, this will help
personalize their app view
to only display information
related to the campus or
send mail or email
regarding the campus.
Child Fields
Fields What it stores Why it’s Needed.
FirstName This field stores the first This is necessary to print
name of the child out their name on the
badge or display it on the
screen.
LastName This field stores the last This is necessary to print
name of the child out their name on the
badge or display it on the
screen.
NickName This field stores the nick This is useful to know the

name of the child.

name a child is used to at
home.

DateOfBirth

This field stores the date of
birth of the child.

This is used to direct
parents to the correct age
group classroom.

Gender

This field stores the gender
of the child.

This is useful for when the
church has events specific
to gender, we can send out
communications to the
correct gender group.

Page 5 of 58

Alert/Warning List fields

description of the alert.

Fields What it stores Why it’s Needed.
TypeOfAlert This field stores the type of | This is useful for
alert a child has. Examples: | categorizing the alerts to
allergies, custodial, etc. display on the screen.
Description This field stores the This is used to display a

detailed description of the
type of alert.

ExpiratonDate

This field stores the
expiration date of the alert.

This is useful for displaying
certain alerts only for a
period of time or if not
stored, it will always display
it.

Pick-up List fields

number of a person that is
in the pick-up list of a child

Fields What it stores Why it’s Needed.
FirstName This stores the first name of | This is useful to display on
a person that is in the pick- | the screen to verify that the
up list of a child person can pick up the child
LastName This stores the last name of | This is useful to display on
a person that is in the pick- | the screen to verify that the
up list of a child person can pick up the child
PhoneNumber This stores the phone This is useful to display on

the screen.

Attendee’s Registration Service/Event fields

Fields

What it stores

Why it’s Needed.

EventScheduleld

This stores the unique
identifier of the event
schedule of the
service/Event the
parent/guardian is
registering their kids in.

This is used in the
application to display
information related to a
specific scheduled event.

Attendeeld

This stores the unique
identifier of the child or a
person registering for the
service/event.

This is used later to relate
the information of the
event a child/person is
registered and their
information

Page 6 of 58

RegistrationDate

This stores the date and
time the child was
registered.

This is used to know the
date and time a child was
registered.

EventGroupld

This stores the Event Group
unique identifier which is
the possible age group the
child may be checked in.

This is used to relate the
information of the event
group information

RegistrationCode

This stores the unique
registration code for a child.

This is used when
generating the QR code to
be printed on the child’s
badge.

Another important usage of the database is when a Team Leader sets up the classes that will be

available to check in children.

Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.
2. The team leader will select the service/event and clicks on the “Open Classroom”

option.

3. The team leader selects an age group with the classroom and assigns the

teacher/volunteers.

From the database perspective, this use case requires storing information about the
classroom and volunteer assignment (from step #3).

Classroom fields

Fields What it stores Why it’s Needed.

AgeGroup This stores the name of the | This is useful to display on
age group. Examples: 15t the screen.
grade, 2" grade, etc.

RoomNumber This stores the room This is useful to display on
number. screen to know where the

room is located.
ClassName This stores the room name. | This is useful because it is

Example: 15t grade A, 1%
grade B, 1%t grade C.

easier for parents to
remember a letter thana 4
or more-digit number.

ScheduleDate

This stores the date the
class was scheduled for
check-in.

This is useful for reporting
purposes and also to display
only the current class
schedule.

Page 7 of 58

MaxNumber

This stores the max number
of people allowed in the
room.

This is used when applying
restrictions in check in.

EventScheduleld

This stores the unique
identifier of the event
schedule of the
service/Event the
parent/guardian is
registering their kids in.

This is used in the
application to display
information related to a
specific scheduled event.

Volunteer fields

These fields are not stored by this use case but are used to assign the volunteers to a

classroom.
Fields What it stores Why it’s Needed.
FirstName This store the volunteers This is useful to display on
first name. the screen.
LastName This stores the volunteers This is useful to display on
last name. the screen.
StartDate This stores the date they This
became volunteers.
LastBackgroundCheck This stores the date of the This helps team leaders to
last background checked. make sure they only assign
volunteers that have passed
a background check.

Another important usage of the database is where the teacher/volunteer starts the check in

process.

Classroom check-in/check-out

1. The teacher/volunteer accesses the app from their tablets and signs in with their

credentials.

2. They will see the classroom they are assigned to.
3. When a parent and child print out the badges, they will present the badge with the QR

code to the teacher/volunteer, who will scan the QR code.

4. The teacher/volunteer will add any comments to the child’s record that parents might

share (diaper bag, bottle to be given at certain time, etc.)

5. Once service ends, parent brings the badge to be scanned by the teacher/volunteer,
6. The app will verify that the parent badge matches with the child QR code; if it does it
will check-out the child from the classroom.

Page 8 of 58

From the database perspective, this use case requires storing information about volunteers
sign in (from step#1), the check-in and check-out process (from steps #3, #4, #5 and #6).
Steps #2 displays the classroom information but does not store any information.

Check-in fields

and time that a child was
checked out.

Fields What it stores Why it’s Needed.
Checkln This field stores the date This is information that can
and time that a child was be used for reporting.
checked in.
CheckOut This field stores the date This is information that can

be used for reporting.

TypeVerificationChecklin

This field stores the type of
verification in the check-in
process. Example: If it was
scanned or manual.

This information is used to
know if the child was
checked in scanning the QR
code from the badge or the
parent did not have the QR
code and it was done
manually.

TypeVerificationCheckOut

This field stores the type of
verification in the check-out
process. Example: If it was
scanned or manual.

This information is used to
know if the child was
checked out scanning the
QR code from the badge or
the parent did not have the
QR code and it was done
manually.

Notes

This field is used to store
notes regarding the child.

This is useful to store any
instructions given by the
parent at check-in time or
to store any information the
teacher may like to note.

Page 9 of 58

MyKids-ChecklIn Structural Rules

New Family Registration Use Case

1. The parent/guardian visits the kiosk located where the app is installed.

2. The parent/guardian will click on the “Create New Family” option.

3. The parent/guardian selects the campus they usually attend to, to then proceed to
enter all the required information for them and the child/children and the new family is
created in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the
current service/event. If they select yes, the app will printout the badges that will be
used in the check-in and check-out process.

For this use case | can see several components involved: the application, the parent using the
application and the database. | will focus on what will be stored in the database. From step # 3, |
see a Campus entity, Parent entity, and Child entity. From step #4, | see an Event entity. Steps #1
and #2 do not reflect any other entity or relationship.

The application will track what campus a parent and child usually attend. For this use case a
Parent or child is associated with a Campus. The application will also track the Event (e.g.,
“Children’s Ministry Sunday Service 9:00 am”), hosted at a specific Campus, a child is registered.
The application also tracks the children that are associated with a parent.

| now have enough information to create some structural database rules. I'll number them so
that they can later be referred to by number.

First rule,

1. Each Parent is associated with one Campus; Each Campus may be associated with
many Parents.

| created this structural rule because | infer from the use cases that the application cannot

add a Parent to the database without selecting what campus they attend, which is why |
made this association mandatory (“each Parent is...”). | indicated that it is optional for a
Campus to associate many Parents, to leave room for the fact that a Campus is created
before any Parent is created.

Second rule,

2. Each Event may be associated with many Campuses; Each Campus may be associated
with many Events.

| create this structural rule because | infer from the use cases that each Campus may be
associated with many Events. | indicated that it is optional for a Campus to associate many
Events, to leave room for the fact that a Campus is created before any Event is created. |

Page 10 of 58

made the Event association with the campus optional as well, because the app may let
me create an event that is still not associated with a campus.

Third rule,

3. Each Parent is associated to one or many children. A Child is associated with one or
many Parents.
| created this structural rule because | infer from the use cases that each Parent is entered
in the system as a Parent if they have at least one child. The same way a child may not
be entered in the system without a parent/guardian assign to.

Forth rule,

4. A child may be associated to many events; An event may be associated to many
children.

| created this structural rule because | infer from the use case that a child does not have
to be registered in an event when we add a child in the application for the first time,
making associating optional. The same way, we can create an event and not have any
child registered. This association is optional.

Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.

2. The team leader will select the service/event and clicks on the “Open Classroom”
option.

3. The team leader selects the Event and the event group (e.g. age group) with the
classroom and assigns the teacher/volunteers.

For this use case | can see 3 different entities that are involved in storing data. Classroom entity,
Event entity (e.g., “Children’s Ministry Sunday Service 9:00 am”), Event Group entity (e.g. “2-year
old”) and the Volunteer entity. According to the use case a classroom cannot be setup without
an assigned volunteer and without assigning a specific event and event.

Fifth rule,

5. Each Event may be associated with many classrooms; Each Classroom may be
associated with many Events.
| created this structural rule because | infer from the use cases that each Classroom may
be setup in the application without indicating what event this classroom is assigned to.
Therefore, | make it optional. On the other end, an Event is optional to have an association
with many classrooms, since an Event is created before a classroom is created.

Page 11 of 58

Sixth rule,

6. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

Although it is not explicitly mentioned, it stands to reason that each event group is
associated to one Event since we need to store what event and event group is being
created for, making the participation mandatory between the event group and the event.
However, the association between event and event group is optional since an event can
be added to the system without it being associated to an Event group.

Seventh rule,

7. A volunteer may be associated with one classroom; A classroom is associated to one or

many volunteers.

| created this structural rule based on the use case explanation that when the team leader
sets up a classroom, the application requires you to select at least one volunteer for a
classroom open for the check-in process. Because of this rule, the relation between the
classroom and volunteer is mandatory. On the other end, the relationship between the
volunteer and the classroom is optional, since a volunteer can be added to the application
without being assign to any classroom.

Classroom check-in/check-out

1.

The teacher/volunteer accesses the app from their tablets and signs in with their
credentials.

They will see the classroom they are assigned to.

When a parent and child print out the badges, they will present the badge with the QR
code to the teacher/volunteer, who will scan the QR code.

The teacher/volunteer will add any comments to the child’s record that parents might
share (diaper bag, bottle to be given at certain time, etc.)

Once service ends, parent brings the badge to be scanned by the teacher/volunteer,
The app will verify that the parent badge matches with the child QR code; if it does it
will check-out the child from the classroom.

From this use case, | see three significant data points: Child entity, Volunteer Entity, Classroom
Entity and Check-In Entity. In the previous 2 use cases | described the rules to some of these
entities.

Eighth rule,

8. A Classroom may be associated to many Check-ins; A Check-in is associated to one

classroom.
| created this structural rule based on the use case explanation that when a classroom is
setup the Volunteer may start the check-in process. The association between the

Page 12 of 58

Classroom and the check-in is optional, to leave room for the fact that a classroom is setup
before any child checks in. Once a child is checked in, they have an association with a
classroom.

Initial MyKids-Checkin ERD

Here are the structural database rules | came up with, base on my 3 use cases, in Iteration 2.

1.

Each Parent is associated with one Campus; Each Campus may be associated with many
Parents.

Each Event may be associated with many Campuses; Each Campus may be associated
with many Events.

Each Parent is associated to one or many children. A Child is associated with one or
many Parents.

A child may be associated to many events; An event may be associated to many
children.

Each Event may be associated with many classrooms; Each Classroom may be associated
with many Events.

Each Event may be associated to many Event Groups; An Event Group is associated to
only one Event.

A volunteer may be associated with one classroom; A classroom is associated to one or
many volunteers.

A Classroom may be associated to many Attendances; An Attendance is associated to
one classroom.

Here is the ERD | came up with for these rules, using Crow’s notation.

Campus ‘ ‘ Parent |
‘ i have —
‘ ‘ T S |
have has
E tG E t i Child
ven roup — have very — reg|5ter /\\< 1 |
have Classroom have Checkln |
Y 1y Y
<< 1 << |

+
Jﬁhas

Volunteer

Page 13 of 58

Adding Specialization-Generalization to MyKids-ChecklIn

| reviewed my existing use cases and noticed that the first use case | can depict a specialization
hierarchy.

New Family Registration Use Case

1.
2.
3.

The parent/guardian visits the kiosk located where the app is installed.

The parent/guardian will click on the “Create New Family” option.

The parent/guardian selects the campus they usually attend to, to then proceed to
enter all the required information for them and the child/children and the new family is
created in the database.

The app will ask the parent/guardian if they would like to print out badges for the
current service/event. If they select yes, the app will printout the badges that will be
used in the check-in and check-out process.

| realized that parent/guardian and child share many characteristics and have other
characteristics that are specific to a parent or child, which means that they should really be
treated as different type or person. | modified the use case, so it reflects it clearly.

New Family Registration Use Case (Updated)

The person visits the kiosk located where the app is installed.

The person will click on the “Create New Family” option.

The person selects the campus they usually attend to; the app will then ask them if the
person they are entering information for is a parent or a child. If it is a child they will
have to extra information, like medical alerts (e.g., allergies, special needs, medication,
etc.) or custodial information. Once all information is entered the new family is created
in the database.

The app will ask the parent/guardian if they would like to print out badges for the
current service/event. If they select yes, the app will printout the badges that will be
used in the check-in and check-out process.

Now that #3 mentions that a parent/guardian and child are a person, | came up with a new
structural database rule to support the change to the use case as follows. “A person is a child
or a parent.” However, after reading through the other use cases, another type of person
comes in place and these are the volunteers. | added a new use case, so it would reflect the
volunteer type of person clearly.

Page 14 of 58

New Volunteer Registration Use Case (New)

1. The person visits the kiosk where the app is installed.

2. The person will click on the “Registration to Volunteer”.

3. The person selects the campus they usually attend to and enters all the required
information. Once all the information is entered, the Volunteer is created in the
database as a Volunteer with a pending status.

4. The volunteer will be contacted in a few days for finger printing for background
check. If the person passes the background check, he will be approved to volunteer,
and his status will be changed to approved.

Now that | have added this new use case “New Volunteer Registration Use Case” and with
the changes | made to “New Family Registration Use Case”, step #3, | created this new
structural database rule to support the change:

“Each person is a parent, child or volunteer, or several of these”

My database for now has only 3 types of person: parent, child and volunteer. For this
specialization-generalization rule, the relationship is totally complete. | have decided to have
it as a totally complete, because of the current purpose of the app: keep track of the child
check-in process for the different services. In the future, if this app is used for other events,
then | will change it to partially complete, since we can have a person registered that does
not fall in to any of the current types of person. A person can be a parent and a volunteer,
so the relationship is overlapping.

| have 9 structural database rules, including my original 8 plus the one | just created.

1. Each Parent is associated with one Campus; Each Campus may be associated with
many Parents.

2. Each Event may be associated with many Campuses; Each Campus may be
associated with many Events.

3. Each Parent is associated to one or many children. A Child is associated with one or
many Parents.

4. A child may be associated to many events; An event may be associated to many
children.

5. Each Event may be associated with many classrooms; Each Classroom may be
associated with many Events.

6. Each Event may be associated to many Event Groups; An Event Group is associated to
only one Event.

7. Avolunteer may be associated with one classroom; A classroom is associated to one
or many volunteers.

8. A Classroom may be associated to many Attendances; An Attendance is associated
to one classroom.

9. Each person is a parent, child or volunteer, or several of these.

Page 15 of 58

| also added

| then added changes to my Initial ERD to support the following changes:

e Support the one additional structural database rule.
e The change | made to the structural database rule #5
e Change of the entity name “Checkin” to “Attendance”

Page 16 of 58

have

5 have
Building PO

have

Room ‘

have

EventGroup ‘

have

have

have

Campus H O< Persol
have
L.
o]
-
Event [
ven ‘ have p—
:T: ‘ Parent ‘ ‘ Child
have H U H
EventSchedule ‘

ClassroomAssignment PO

have

N

VolunteerAssignment %Q

Registrant |

have%oéu

Attendance

have

have

Page 17 of 58

MyKids-Checkln Relationship Classification and Associative Mapping
The associative relationships in my conceptual ERD are:

1. Campus/Person: A Campus may be associated with many Persons; Each Person is
associated to a Campus.

2. Campus/Event: A Campus may be associated with many Events; Each Event is
associated to a Campus.

3. Event/Event Group: An Event may be associated with many Event Groups; Each
Event Group is associated to an Event.

4. Event/Classroom: An Event may be associated with many Classrooms; A Classroom
may be associated to many Events.

5. Classroom/Person: A Classroom may be associated with many persons; A Person is
associated to a classroom.

6. Classroom/Attendance: A classroom may be associated to many Attendances; An
Attendance may be associated to a Classroom.

| changed the name of the entity Classroom to ClassroomAssignment to better describe its
purpose. | added 2 new entities, Building and Room, to be able to assign a specific room when
creating a new classroom assignment. | added a third entity, Registrant, that will have a
relationship with the Person who will register for an event. The reason | added this entity is
because a Person can register and not necessarily check in to a classroom, since they can change
their mind and leave. With this | can keep track of the persons who registered versus the ones
that attend.

Since Event/Classroom is a M:N relationship, it was necessary to create a bridge entity to
support the relationship. | named the entity EventSchedule.

Because of all these changes, new associative relationships appear which | describe below:

7. Building/Room: A building may be associated with many rooms; A room is
associated with one Building

8. Campus/Building: A Campus may be associated with many Building; A Building is
associated to one Campus.

9. Event/EventSchedule: An Event may be associated with many Event Schedules; An
Event Schedule is associated to one Event.

10. EventSchedule/ClassroomAssignment: An Event Schedule may be associated to
many Classroom Assignments; A Classroom Assignment is associated to one Event
Schedule.

11. EventSchedule/RegistrantAttendance; An Event Schedule may be associated to
many RegistrantAttendance; A RegistrantAttendance is associated to one Event
Schedule.

Page 18 of 58

| created surrogate keys for all my tables and used the datatype DECIMAL when creating my
primary keys.

Building have Campus
PK ‘Building\d ‘DEC\MAL(lZ) | PK ‘Campusld ‘DECIMAL(lZ)‘
have have
Y
€
Room
—++ PK |Roomid DECIMAL(12) B
FK1 |Buildingld DECIMAL(12) PK |Eventid DECIMAL(12)
FK1 |Campusld |DECIMAL(12)
have
EventGroup have
PK |EventGroupld |DECIMAL(12) =()—
FK1 |Eventld DECIMAL(12) I
have | EventSchedule
have PK |EventScheduleld |DECIMAL(12)
FK1 |Eventld DECIMAL(12)
ClassraomAssignment |
PK | Classroomid DECIMAL(12)
=<7 FK1 |EventScheduleld |DECIMAL(12) have. h {
FK2 |EventGroupld DECIMAL(12)
FK3 |Roomlid DECIMAL(12)
:?: :‘: | Attendance
has have PK [Attendanceld |DECIMAL(12)
)R FK1 |Classroomid |DECIMAL(12)
VTR ‘ FK2 |Registrantld DECIMAL(12)
PK |VolunteerAssignmentld |DECIMAL(12)
FK1 |Personid DECIMAL(12)
FK2 |Classroomid DECIMAL(12)

have

Person

‘ PK |Persumd

DECIMAL(12)

have

I

.

| Registrant

have

PK |Registrantid
FK1 |EventScheduleld
FK2 |Personid

DECIMAL(12)
DECIMAL(12)
DECIMAL(12)

have

o

Page 19 of 58

MyKids-ChecklIn Specialization-Generalization Mapping

| have one specialization-generalization relationships in my conceptual ERD, for the Person

entity. Here is my DBMS physical EERD with these relationships mapped into them.

ve

Person

ol

—

Child

) have have
| Building Campus I I
| PK ‘Buildingld |DECIMAL(12)| PK |Campu5|d |DECIMAL(12)
have
? have
Room
~—H- PK |Roomid DECIMAL(12) Event
I
FK1 |Buildingld DECIMAL(12) PK |Eventld DECIMAL(12)| "'
FK1 |Campusid |DECIMAL(12)
have
EventGroup Parent] ‘
have
PK |EventGroupld |DECIMAL(12) |PK,FK1|F‘ersonId|DECIMAL(12)J \PK. FK1‘Persnnld|DEClMAL(12)J
FK1 |Eventld DECIMAL(12)
have ‘ EventSchedule ‘
have PK |EventScheduleld |DECIMAL(12) J
? FK1 |Eventld DECIMAL(12) P
ClassroomAssignment ‘ | Reéls;ram
PK |Classroomld DECIMAL(12) PK |Registrantid DECIMAL(12)
FK1 |EventScheduleld |DECIMAL(12) have have FK1 |EventScheduleld |DECIMAL(12)
FK2 |EventGroupld DECIMAL(12) EK2 | Personld DECIMAL(12)
FK3 |Roomid DECIMAL(12)
i‘: | Attendance
has r;h(we PK |Attendanceld |DECIMAL(12) have
* FK1 |Classroomlid | DECIMAL(12) >Q—‘
T m—] FK2 |Registrantld | DECIMAL(12)
PK | VolunteerAssignmentld | DECIMAL(12)
FK1 |Personld DECIMAL(12)
FK2 |Classroomid DECIMAL(12)

Page 20 of 58

The additional entities under Person are Parent, Child and Volunteer, each of which have a
primary and foreign key of Personld which reference the primary key of Person. With these
additional mappings, this DBMS physical now has all the relationships in the conceptual ERD.

MyKids-CheckIn Attributes

When | started adding the attributes for each one of my tables, | realized that the Registrant
table could be combined with the Attendance table. | removed these 2 tables and combined
them in the RegistrantAttendance table.

| also noticed, that my Parent and Volunteer subtype entities had common attributes, which
then | decided to create a subtype Adult as the supertype entity of the Volunteer subtype

entity.

Because of these changes my structural database rules changed as follows:

1.

10.

11.

12.

13.

Each Person is associated with one Campus; Each Campus may be associated with
many Persons.

Each Event is associated with one Campus; Each Campus may be associated with
many Events.

Each Adult may be associated to one or many children. A Child is associated with one
or many Adults.

Each Event may be associated to many Event Schedule; An Event Schedule is
associated to one Event.

An Event Schedule may be associated to many Registrant Attendance; A Registrant
Attendance is associated to one Event Schedule.

A child may be associated to many Registrant Attendance; A Registrant Attendance
is associated to one child.

Each Event Schedule may be associated with many Classroom Assignments; Each
Classroom Assignment is associated with one Event Schedule.

Each Event may be associated to many Event Groups; An Event Group is associated to
only one Event.

A Volunteer may be associated with many Volunteer Assignments; A Volunteer
Assignment is associated to one Volunteer.

A Classroom Assignment may be associated to many Registrant Attendances; A
Registrant Attendance is associated to one Classroom Assignment.

An Event Group may be associated to many Classroom Assignment; A Classroom
Assignment is associated to one Event Group.

Each Campus may be associated to many Buildings; A Building is associated to one
Campus.

Each Building may be associated to many Rooms; A Room is associated to one
Building.

Page 21 of 58

14. A Room may be associated to many Classroom Assignments; A Classroom

Assignment is associated to one Room.

15. Each person is an adult or child.

16. Each adult is a volunteer, or none.

Below | will describe all my attributes with their datatypes for each table in my database and |
will explain the reason of my choices.

Table

Attribute

Datatype

Reasoning

Building

Name

VARCHAR(100)

Every building has a name which
acts like the identifier for the
building when the user is looking it
up in the app. | allow for up to 100
characters.

Building

Description

VARCHAR(1000)

Every building may have a
description. People may want to
describe the building more than just
with the name. | allow for 1,000
characters so that people can type
in something long if they need to.

Building

NumberFloor

DECIMAL(2)

Every building has a number of
floors. | allow for up to 2 digit
number.

Building

Notes

VARCHAR(1000)

Every building may have notes.
People may want to add extra notes
of the building.

Building

Active

DECIMAL(1)

This flag will let the user Inactivate a
building that we no longer have.
The values it will have will be 1 for
Active and O for inactive.

Room

Name

VARCHAR(100)

Every room has a name which acts
like the identifier of the room and
how it will be searched in the app. |
allow for up to 100 characters.
Example:

2-year-old room “A”

2-year-old room “B”

Room

RoomNumber

VARCHAR(10)

Every room has a room number. |
created it as a VARCHAR(10) since
some room numbers may be
alphanumeric and | allow up to 10
characters.

Room

Capacity

DECIMAL(5)

Each room has a number of people
capacity. | allow up to 5-digit
number which is 99999 which gives
enough space in case something
extraordinary happens.

Room

Floor

DECIMAL(2)

Every room has a floor number
where it is located. | allow up to 2-
digit number.

Room

Note

VARCHAR(1000)

Every room may have notes. In
some cases, people would like to
add notes like, this room has a
projector or bathroom, or if

Page 22 of 58

volunteers should be very careful
with specific items in the room, etc.

Room

Active

DECIMAL(1)

This flag will let the user Inactivate a
room that we no longer have. The
values it will have will be 1 for
Active and O for inactive.

Campus

Name

VARCHAR(255)

Every campus has a name that
serves as the identifier of the
campus. | allow up to 255
characters.

Campus

Addess1

VARCHAR(255)

Every campus has an address which
is the street. | allow up to 255
characters.

Campus

Address2

VARCHAR(255)

Every campus may have extra
information on the address. | allow
up to 255 characters.

Campus

City

VARCHAR(255)

Every campus is in a city. | allow up
to 255 characters.

Campus

State

VARCHAR(2)

Every campus is in a state. | allow 2
characters.

Campus

PostalCode

VARCHAR(10)

Every campus has a postal code. |
allow up to 10 characters.

Campus

Active

DECIMAL(1)

This flag will let the user Inactivate a
campus that we no longer have.
The values it will have will be 1 for
Active and O for inactive.

Event

Name

VARCHAR(255)

Every event has a name that acts
like an identifier and how people
will search it in the app. | allow up
to 255 characters.

Event

Description

VARCHAR(1000)

Every event may have a detailed
description of the event. | allow up
to 1000 characters.

Event

RegistrationCheckInType

CHAR(1)

Every event has a type of check in,
whether a registrant checks in the
kiosk with their phone number (P)
or with their ID (I). The 2 distinct
values this attribute will have are ‘P’
and ‘I'. This helps to setup the kiosk
with the correct screen.

Event

Active

DECIMAL(1)

This flag will let the user Inactivate
an event that we no longer have.
The values it will have will be 1 for
Active and O for inactive.

EventSchedule

EventStartDate

DATETIME

Each event scheduled has a start
date and time.

EventSchedule

EventEndDate

DATETIME

Each event scheduled has an end
date and time.

EventSchedule

RegistrationStartDate

DATETIME

Each event schedule has a
registration start date and time. For
example, and Event is scheduled for
the Sunday 9:00 am service, but we
can start registering kids starting at
8:30 am so the app should be
available to start generating the
badges at this time.

EventSchedule

RegistrationEndDate

DATETIME

Each event schedule has a
registration end date and time. For

Page 23 of 58

example, for the 9:00 am service
the parents can start printing the
badges (registering) at 8:30 am and
a parent that comes in late can print
out badges up until 10: 00 am.

EventSchedule

CreatedDate

DATETIME

Each event schedule has a created
date.

EventGroup

Name

VARCHAR(255)

Each event group has a name the
will be like the identifier. | allow up
to 255 characters. Example:

0 to 3-month-old

4 to 6-month-old

7 to 12-month-old

13 to 24-month-old

2-year-old

3-year-old

PreK 4

Kindergarten, etc.

EventGroup

Description

VARCHAR(1000)

Each event group may have a
description. | allow up to 1000
characters

EventGroup

AgeStartYear

DECIMAL(4,2)

Each event group has an age range.
The app will convert it into year’s
even if it is months. This will be
used by the app to suggest what
age group a child should check in to.
I allow up 2 digit and 2 decimal
points.

EventGroup

AgeEndYear

DECIMAL(2)

Each event group has an age range.
The app will convert it into year’s
even if it is months. This will be
used by the app to suggest what
age group a child should check in to.
| allow up 2 digit and 2 decimal
points.

EventGroup

Active

DECIMAL(1)

This flag will let the user Inactivate
an event group that we no longer
have. The values it will have will be
1 for Active and O for inactive.

ClassroomAssignment

AssignmentDate

DATETIME

Every classroom assignment will
have an assignment date and time
which is the date the class was
opened to start checking in.

ClassroomAssignment

AssignmentByld

DECIMAL(12)

Every classroom assignment will
have an assignmentByld which is
the volunteer that setup the
classroom in the app.

ClassroomAssignment

Notes

VARCHAR(1000)

Every classroom assignment may
have notes, that could be used by
the team leader volunteer or by the
teacher volunteers.

RegistrantAttendance

PickupCode

VARCHAR(10)

Every registrant has a pickup code
that the app will generate. | allow
up to 10 characters.

RegistrantAttendance

RegistrationDate

DATETIME

Every registrant (child) has a
registration date when parents sign
them in in the kiosk to printout
badges.

Page 24 of 58

RegistrantAttendance

RegisteredByld

DECIMAL(12)

Every registrant is registered by the
parents, this attribute will save the
parent id.

RegistrantAttendance

CheckinDate

DATETIME

Every registrant may have a check-
in date and time when they are
checked in to their classrooms.

RegistrantAttendance

CheckinByld

DECIMAL(12)

Every registrant may have a
volunteer that checks them in to
the classroom.

RegistrantAttendance

TypeCheckin

CHAR(1)

Every registrant may have been
checked-in with scanning QR code
or manually. The attribute values
would be ‘C’ for QR code or ‘M’ for
manual check in.

RegistrantAttendance

CheckOutDate

DATETIME

Every registrant may have a check
out date and time when they are
checked out.

RegistrantAttendance

CheckOutByld

DECIMAL(12)

Every registrant may have a
volunteer that checked them out.

RegistrantAttendance

TypeCheckOut

CHAR(1)

Every registrant may have been
checked-out with scanning QR code
or manually. The attribute values
would be ‘C’ for QR code or ‘M’ for
manual check out.

VolunteerAssignment

AssignmentDate

DATETIME

Every volunteer assignment has an
assignment date and time to their
classroom.

VolunteerAssignment

AssigmentByld

DECIMAL(12)

Every volunteer assignment is done
by a team leader volunteer.

Person FirstName VARCHAR(64) Every person has a first name. |
allow up to 64 characters.

Person MiddleName VARCHAR(64) Every person may have a middle
name. | allow up to 64 characters.

Person LastName VARCHAR(64) Every person has a last name. |
allow up to 64 characters.

Person Gender CHAR(1) Every person has a gender. ‘F’ for
female and ‘M’ for male. | allow one
character.

Person DateOfBirth DATE Each person has a date of birth.

Person EmailAddress VARCHAR(255) Each person may have an email
address.

Person HomePhone VARCHAR(10) Each person may have a home
phone.

Person Address1 VARCHAR(255) Each person has an address 1.

Person Address2 VARCHAR(255) Each person may have an address 2.

Person City VARCHAR(255) Each person lives in a city.

Person State VARCHAR(2) Each person lives in a state.

Person PostalCode VARCHAR(10) Each person has a postal code.

Person CreatedDate DATETIME This is the date and time when the
record was created in the table.

Person ModifiedDate DATETIME This is the date and time the record
was last modified.

Person PersonType CHAR(1) This is the subtype discriminator: It
will have ‘A’ for adult and ‘C’ for
child.

Person Active DECIMAL(1) This is a flag that will be used to

inactivate a person.

Page 25 of 58

Adult

UserName

VARCHAR(64)

Every adult has a username. | allow
up to 64 characters.

Adult

EncryptedPassword

VARCHAR(20)

Every adult has an encrypted
password that can be used to log in
to the app.

Adult

MobilePhone

VARCHAR(10)

Every adult may have a mobile
phone.

Adult

MaritalStatus

CHAR(1)

Every adult has a marital status.
Divorce

Married

Partnered

Separated

Single

Widowed

Adult

GovlssuedID

VARCHAR(20)

Every adult has a government
issued Id. | allow up to 20
characters.

Adult

TypeGovlssuedID

CHAR(1)

Every adult’s government issued id
can be a state id or a driver’s
license. Attribute values: ‘S’ for
state id or ‘D’ for driver’s license.

Child

NickName

VARCHAR(64)

Every child may have a specific
name they are called at home. |
allow up to 64 characters.

Child

Allegries

VARCHAR(1000)

Every child may have allergies. |
allow up to 1000 characters.

Child

Conditions

VARCHAR(1000)

Every child may have some medical
conditions. | allow up to 1000
characters.

Child

Custodiallnfo

VARCHAR(1000)

Every child may have specific
custodial information. | allow up to
1000 characters.

Volunteer

BackgroundCheckStatus

CHAR(1)

Every volunteer must pass a
background check. There are 3
different status for the results:

e (Clear

e Consider

e Pending

Volunteer

BackgroundCheckDate

DATETIME

Every volunteer must have the date
of his last background check since
they have to repeat it every 5 or 7
years.

Volunteer

VolunteerType

CHAR(1)

Volunteers can be categorized in:
e Teachers
e Team Leaders
e Admin

Volunteer

Active

DECIMAL(1)

A volunteer has a status of ‘Active’
to volunteer. This flag will be used
to Inactivate a volunteer.

ParentChild

Childid

DECIMAL(12)

Every child has a parent. And every
Parent has a child.

ParentChild

ChildRelationship

VARCHAR(20)

Every child has a specific
relationship with the parent. They
can be

Page 26 of 58

Foster Child
Guest Child
Minor Child

Page 27 of 58

Here is my ERD with the attributes included.

Building
PK | Buildingld DECIMAL(12)
FK1 | Campusld DECIMAL(12)
Name VARCHAR(100)
Description VARCHAR(1000) |-
NumberFloor DECIMAL(2)
Notes VARCHAR(1000)
Active DECIMAL(1)
have
Room
+}{ PK |Roomid DECIMAL(12)
FK1 | Buildingld DECIMAL(12)
Name VARCHAR(100)
RoomNumber | VARCHAR(10)
Capacity DECIMAL(S)
Floor DECIMAL(2)
Note VARCHAR(1000)
L Active DECIMAL(1)
EventGroup
have PK |EventGroupld |DECIMAL(12) =)
FK1 |Eventld DECIMAL(12)
Name VARCHAR(255)
Description VARCHAR(1000)
AgeStartYear DECIMAL(2)
AgeEndYear DECIMAL(2)
Active DECIMAL(1) J
have
D)
IS
ClassroomAssignment ‘
PK | Classroomld DECIMAL(12)
FK1 | EventScheduleld |DECIMAL(12) [>()
(< FK2 |EventGroupld DECIMAL(12)
FK3 |Roomld DECIMAL(12) H
AssignmentDate | DATETIME
F4 | AssignmentByld DECIMAL(12) L_—()

Notes

has

\

VARCHAR(1000)

VolunteerAssignment

PK | VolunteerAssignmentid | DECIMAL(12)
FK1 |Personld DECIMAL(12)
FK2 | Classroomld DECIMAL(12)
AssignmentDate DATETIME
F3 | AssignmentByld DECIMAL(12)

Campus
PK |Campusld DECIMAL(12)
Name VARCHAR(255)
Addressl VARCHAR(255) |
have Adress? VARCHAR(255)
City VARCHAR(255)
State VARCHAR(2)
PostalCode VARCHAR(10)
Active DECIMAL(1)
hn‘vc
5’\)
I Event
PK |Eventld DECIMAL(12)
FK1 |Campusid DECIMAL(12)
- Name VARCHAR(255)
Description VARCHAR(1000)
pave RegistrationCheckinType |CHAR(1)
Active DECIMAL(1)
EventSchedule
PK |EventScheduleld DECIMAL(12)
FK1 |Eventid DECIMAL(12)
H EventStartDate DATETIME
EventEndDate DATETIME
RegistrationStartDate | DATETIME
RegistrationEndDate | DATETIME
have CreatedDate DATETIME
have
Q)
A
RegistrantAttendance
have——()| PK |Registrantid DECIMAL(12)
FK1 |EventScheduleld 'DECIMAL(12)
FK2 |Personld DECIMAL(12) Y
FK3 | Classroomld DECIMAL(12)
PickupCode VARCHAR(10)
RegistrationDate | DATETIME
FK4 |RegisteredByld | DECIMAL(12)
CheckinDate DATETIME =¥
FK5 |CheckinByld DECIMAL(12)
TypeCheckin CHAR(1)
CheckOutDate DATETIME
FK6 |CheckOutByld DECIMAL(12)
TypeCheckOut CHAR(1)
Notes VARCHAR(1000)

have-

have

have

PK

ve

Person
Personld
FirstName
MiddleName
LastName
Gender
DateOfBirth
EmailAddress
HomePhone
Address1
Address2
City
State
PostalCode
CreatedDate
ModifiedDate
PersonType

|
©

&

Active

| DECIMAL(12)

DECIMAL(1)

VARCHAR(64)
VARCHAR(64)
VARCAHR(64)
CHAR(1)

DATE
VARCHAR(255)
VARCHAR(10)
VARCHAR(255)
VARCHAR(255)
VARCHAR(255)
VARCHAR(2)
VARCHAR(10)
DATETIME
DATETIME
CHAR(1)

1

Adult
PK, FK1|Personid DECIMAL(12) PK, FK1 |Personid
UserName VARCHAR(64) NickNam
EncryptedPassword | VARCHAR(20) Allergies
MobilePhone VARCHAR(10) Condition
Marital Status CHAR(1) Custodial
GovlssuedID VARCHAR(20)
TypeGovissuediD | CHAR(1) J
(@)
N
has
Voluntesr -
PK, FK1 |Personld DECIMAL(12) O< P
BackgroundCheckStatus CHAR(1) Fi
BackgroundCheckDate DATETIME Ft
VolunteerType CHAR(1)
Active DECIMAL(1) o

Page 28 of 58

MyKids-Checkln Normalization

I notice only one place where there is redundancy in my physical ERD, and that is with the address
information in the Person entity. If different people are registered and the are all living in the
same address, this information is redundant. Here is my ERD with the address information
normalized.

have

Building
PK | Buildingld DECIMAL{12)
FK1 |Campusid DECIMAL(12)
Name VARCHAR(100) e
Description VARCHAR(1000) =)
NumberFloor | DECIMAL(2)
Notes VARCHAR(1000)
Active DECIMAL(1)

Room

PK |Roomid DECIMAL(12)

FK1 |Buildingld DECIMAL(12)
Name VARCHAR(100)
RoomNumber | VARCHAR(10)
Capacity DECIMAL(S)
Floor DECIMAL(2)
Note VARCHAR(1000)
Active DECIMAL(1)

EvemGroup

have

PK | EventGroupld | DECIMAL{12)

FK1 Eventid DECIMAL(12)
Name VARCHAR(255)
Descriptian VARCHAR(1000)
AgeStartYear | DECIMAL(2)
AgeEndyear DECIMAL(2)
Active DECIMAL(1)

have

ClassroomAssignment
PK |Classroomld |DECIMAL(12)
FK1 |EventScheduleld |DECIMAL(12)

:_,\(':_' FK2 | EventGroupld DECIMAL(12)
FK3 |Roomid DECIMAL(12)
AssignmentDate | DATETIME

F4 |AssignmentByld DECIMAL(12) B0
Notes VARCHAR(1000) |
has
VolunteerAssignment
PK VolunteerAssignmentld DECIMAL(12)
FK1 Personid DECIMAL(12)
FK2 Classroomid DECIMAL(12)
AssignmentDate DATETIME
F3 AssignmentByld DECIMAL(12)
A

Person
(=
R PK |Personid
PK Campusld DECIMAL(12) Addressid
Name VARCHAR(255))
have FirstName
Addressl VARCHAR(255) -} O MiddieName
Adress2 VARCHAR(255) LastName
City VARCHAR(255) Address Gender
FK1 Stateld DECIMAL(12) PK Personid DECIMAL(12) ||} has e N
PostalCode VARCHAR(10) Address1 VARCHAR(255) Emalladdress
Active DECIMAL(1) Address2 VARCHAR(255)
| . H HomePhone
B 4 City VARCHAR(255) CreatedDate
nebe FK1 Stateld DECIMAL(12) MocifiadDats
PostalCode VARCHAR(10)
) has- 7 - PersonType
0 ;3 Active
Event nas
PK |Eventid DECIMAL(12) &
FK1 |Campusid DECIMAL(12) -
Name VARCHAR(255) -~ -
PK StateiD DECIMAL(12)
Deseription VARCHAR(1000)
StateName VARCHAR(255)
RegistrationCheckinType | CHAR(L) TN
) StateAbbrev VARCHAR(2) (d
Active DECIMAL(1) | L)
| /
Lpave
s have
EventSchedule
PK | EventScheduleld DECIMAL(12) Adult
FK1 |Eventid DECIMAL(12) PK, FK1 Personid DECIMAL(12)
EventStartDate DATETIME UserName VARCHAR(64)
EventEndDate DATETIME EncryptedPassword | VARCHAR(20)
RegistrationStanDate | DATETIME MobilePhone VARCHAR(10)
RegistrationEndDate | DATETIME MaritalStatus CHAR()
CreatedDate DATETIME J GovissuediD VARCHAR(20)
TypeGovissuediD [CHAR(1)
have b
RegistrantAtiendance]
PK | Registrantid DECIMAL(12) 'C'i"\
FK1 EventScheduleld DECIMAL(12) l_ A
FK2 Personid DECIMAL(12) o
FK3 | Classroomid DECIMAL(12) ()
PickupCode VARCHAR(10)
RegistrationDate DATETIME
FK4 RegisteredByld | DECIMAL(12)
CheckinDate DATETIME Volunteer
FKS CheckinByld DECIMAL(12) p PK, FK1 | Parsonid DECIMAL(12)
TypeCheckin CHAR(1) BackgroundCheckStatus CHAR(1)
CheckOutDate DATETIME B dCheckDate DATETIME
FK6 CheckOutByld DECIMAL(12) VolunteerType CHAR(1)
TypeCheckOut CHAR(1) Active DECIMAL(1)
Notes VARCHAR(1000) . . :

have J

Page 29 of 58

DE!
DES
VAF
VAF
VAF
CH;
DA
VAF
VAF
DA
DA
CH,

Below are my structural database rules modified to reflect the new entities. The new ones are

italicized.

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

Each Person is associated with one Campus; Each Campus may be associated with
many Persons.

Each Event is associated with one Campus; Each Campus may be associated with
many Events.

Each Adult may be associated to one or many children. A Child is associated with one
or many Adults.

Each Event may be associated to many Event Schedule; An Event Schedule is
associated to one Event.

An Event Schedule may be associated to many Registrant Attendance; A Registrant
Attendance is associated to one Event Schedule.

A Person may be associated to many Registrant Attendance; A Registrant
Attendance is associated to one Person.

Each Event Schedule may be associated with many Classroom Assignments; Each
Classroom Assignment is associated with one Event Schedule.

Each Event may be associated to many Event Groups; An Event Group is associated to
only one Event.

A Volunteer may be associated with many Volunteer Assignments; A Volunteer
Assignment is associated to one Volunteer.

A Classroom Assignment may be associated to many Registrant Attendances; A
Registrant Attendance is associated to one Classroom Assignment.

An Event Group may be associated to many Classroom Assignment; A Classroom
Assignment is associated to one Event Group.

Each Campus may be associated to many Buildings; A Building is associated to one
Campus.

Each Building may be associated to many Rooms; A Room is associated to one
Building.

A Room may be associated to many Classroom Assignments; A Classroom
Assignment is associated to one Room.

Each person is an adult or child.

Each adult is a volunteer, or none.

A person lives at an address; Each address is associated with one or many persons.
Each address has a state; Each state may be associated with many addresses.

Below is my new conceptual ERD to reflect the new entities.

Page 30 of 58

Page 31 of 58

MyKids-CheckIn Create Script

| created a script file named SQLScript.sql which includes all the DROP TABLE commands at the
top s that script is rerunnable and then | added the CREATE TABLE command with all the
columns and constraints. | just included a few screens shots of the scripts and the execution.

Drop statement for all the tables and create table State and Address.

SQLSeript.sql - DE..PETBVVB\dayi7 (51)) + X [ellel RN (Rl L
r* Drop Tablesssxxx /
DROP TABLE RegistrantAttendance;
DROP TABLE VolunteerAssignment;
DROP TABLE i
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE
DROP TABLE C H
DROP TABLE Adult;|
DROP TABLE Person;
DROP TABLE Address
DROP S
/% ***Create table /
FICREATE TABLE State(

StateId DECIMAL(12) NOT WULL PRIMARY KEY,

StateName VARCHAR(255) NOT NULL,

StateAbbrev VARCHAR(2) NOT NULL

EICREATE TABLE Address(
AddressId DECIMAL(12) NOT NULL IDENTITY PRIMARY KEY,
Address1 VARCHAR(255) NOT NULL,
Address2 VARCHAR(255),
City VARCHAR(255) NOT NULL,
Stateld DECIMAL(12) NOT NULL,
PostalCode VARCHAR(18) NOT NULL
SIALTER TABLE Address
122% -~ oo o

8 Messages
Commangs complesed successfully.

2% -

@ Query executed successfully.

Create table Person Supertype and Adult subtype

SQLScriptsql - DE..PETBVVB\dayi7 51) = X 4

=ICREATE TABLE Person(
PersonId DECIMAL(12) NOT NULL IDENTITY PRIMARY KEY,
AddressId DECIMAL(12) NOT NULL,
FirstName VARCHAR(64) NOT NULL,
MiddleName VARCHAR(64),
LastName VARCHAR(64) NOT NULL,
Gender CHAR(1) NOT NULL,
DateOfBirth DATE,
EmailAddress VARCHAR(255),
HomePhone VARCHAR(10),
CreatedDate DATETIME NOT NULL DEFAULT(getdate()),
ModifiedDate DATETIME,
PersonType CHAR(1) NOT NULL,
Active DECIMAL(1) NOT NULL DEFAULT(1)

FIALTER TABLE Person
ADD CONSTRAINT Address_PersonFK FOREIGN KEY (AddressId) REFERENCES Address(AddressId);

CICREATE TABLE Adult(
PersonId DECIMAL(12) NOT NULL PRIMARY KEY,
UserName VARCHAR(64) NOT NULL,
EncryptedPassword VARCHAR(20) NOT NULL,
MobilePhone VARCHAR(20) NOT NULL,
MaritalStatus CHAR(1) NOT NULL,
GovIssuedId VARCHAR(20) NOT NULL,
TypeGovIssuedID CHAR(1) NOT NULL
FIALTER TABLE Adult
ADD CONSTRAINT Adult_PersonFK FOREIGN KEY (PersonId) REFERENCES Person(Personld);

FICREATE TABLE Child(
122% ~ - T

BF Messages
Commands complesed successfully.

% -

@ Query executed successfully.

)+

DESKTOP-PTBVVE\SQLEXPRESS0... | DESKTOP-PGTEVVB\dayi7 ... | MyKidsCheckin | 00:00:00 | 0rows.

T .

DESKTOP-PGTBVVB\SQLEXPRESSO... | DESKTOP-PGTBVVBAdayi7 ... | MyKidsCheckin | 00:00:00 | 0 rows.

Page 32 of 58

SQUScript.sq - DE..PETBVVB\dayiT (1) & X [Holle NI B g ey

FICREATE TABLE Child(
PersonId DECIMAL(12) NOT NULL PRIMARY KEY,
NickName VARCHAR(64),
Allergies VARCHAR(1000),
Conditions VARCHAR(1600),
CustodialInfo VARCHAR(1000)

FIALTER TABLE Child

“ICREATE TABLE ParentChild(
ParentChildId DECIMAL(12) NOT NULL IDENTITY PRIMARY KEY,
ParentTd DECIMAL(12) NOT NULL,
ChildId DECIMAL(12) NOT NULL,
childRelationship VARCHAR(20)

FIALTER TABLE ParentChild

CIALTER TABLE ParentChild

FICREATE TABLE Volunteer(
PersonId DECIMAL(12) NOT NULL PRIMARY KEY,
BackgroundCheckStatus CHAR(1) NOT NULL,
BackgroundCheckDate DATETIME NOT NULL,
VolunteerType CHAR(1),
Active DECIMAL(1) NOT NULL DEFAULT(1)

FIALTER TABLE Volunteer
122% -

B Messages

Commands completed successZfully.

2% -

@ Query executed successfully,

ADD CONSTRAINT ParentChild_FK2 FOREIGN KEY (ChildId) REFERENCES Child(PersonId);

ADD CONSTRAINT Child_PersonFK FOREIGN KEY (Personld) REFERENCES Person(PersonId);

ADD CONSTRAINT ParentChild_FK1 FOREIGN KEY (ParentId) REFERENCES Adult(PersonId);

ADD CONSTRAINT Volunteer_PersonFK FOREIGN KEY (PersonId) REFERENCES Adult(PersonId);

DESKTOP-PETBVVB\SQLEXPRESSO... | DESKTOP-PSTBVVB\dayi7 ... MyKidsCheckin | 00:00:00 | 0 rows

A «

MyKids-CheckIn Indexes

Below is a table identifying each foreign key column that | will create an index for, whether the

index should be unique or not, and why.

Column

Unique?

Description

Address.Stateld

Not unique

The FK in Address
referencing State is not
unique because there
can be many addresses
with the same state.

Person.Addressld

Not unique

The FK in Person
referencing Address is
not unique because
there can be many
person with the same
address.

ParentChild.Parentld

Not unique

The FK in ParentChild
referencing Adult is not
unique because there
can be many child of the
same Adult.

ParentChild.Childld

Not unique

The FK in ParentChild
referencing Child is not
unique because there
can be many Parents of
the same Child.

Page 33 of 58

Campus.Stateld

Not unique

The FKin Campus
referencing State is not
unique because there
can be many Campuses
with the same state.

Building.Campusld

Not unique

The FK in Building
referencing Campus is
not unique because
there can be many
Buildings with the same
campus.

Room.Buildingld

Not unique

The FKin Room
referencing Building is
not unique because
there can be many
rooms in the same
building.

Event.Campusld

Not unique

The FK in Event
referencing Campus is
not unique because
there can be many
Events in the same
campus.

EventSchedule.Eventld

Not unique

The FK in EventSchedule
referencing Event is not
unique because there
can be many
EventSchedule for the
same event.

EventGroup.Eventld

Not unique

The FK in EventGroup
referencing Event is not
unique because there
can be many EventGroup
for the same Event.

ClassroomAssignment.EventScheduleld

Not unique

The FK in
ClassroomAssignment
referencing
EventSchedule is not
unique because there
can be many
ClassroomAssignments
for the same
EventSchedule.

Page 34 of 58

ClassroomAssignment.EventGroupld

Not unique

The FK'in
ClassroomAssignment
referencing EventGroup
is not unique because
there can be many
ClassroomAssignments
for the same
EventGroup.

ClassroomAssignment.Roomid

Not unique

The FKin
ClassroomAssignment
referencing Room is not
unique because there
can be many
ClassroomAssignments
with the same room.

ClassroomAssignment.AssignmentByld

Not unique

The FK'in
ClassroomAssignment
referencing Volunteer is
not unique because
there can be many
ClassroomAssignments
with the same volunteer
Id.

VolunteerAssignment.Personld

Not unique

The FK'in
VolunteerAssignment
referencing Volunteer is
not unique because
there can be many
VolunteerAssignment
with the same person(
volunteer).

VolunteerAssignment.Classroomid

Not unique

The FK in
VolunteerAssignment
referencing
ClassroomAssignment is
not unique because
there can be many
VolunteerAssignment for
the same
ClassroomAssignment.

VolunteerAssignment.AssignmentByld

Not unique

The FK'in
VolunteerAssignment
referencing Volunteer is

Page 35 of 58

not unique because
there can be many
VolunteerAssignment for
the same volunteer id.

RegistrantAttendance.EventScheduleld

Not unique

The FKin
RegistrantAttendance
referencing
EventSchedule is not
unique because there
can be many
RegistrantAttendance for
the same EventSchedule.

RegistrantAttendance.Personld

Not unique

The FK'in
RegistrantAttendance
referencing Person is not
unique because there
can be many
RegistrantAttendance for
the same Person.

RegistrantAttendance.Classroomlid

Not unique

The FK'in
RegistrantAttendance
referencing
ClassroomAssignment is
not unique because
there can be many
RegistrantAttendance for
the same
ClassroomAssignment.

RegistrantAttendance.RegisteredByld

Not unique

The FKin
RegistrantAttendance
referencing Person is not
unique because there
can be many
RegistrantAttendance for
the same Person.

RegistrantAttendance.CheckinByld

Not unique

The FK in
RegistrantAttendance
referencing Volunteer is
not unique because
there can be many
RegistrantAttendance for
the same Volunteer.

Page 36 of 58

RegistrantAttendance.CheckOutByld

Not unique

The FK'in
RegistrantAttendance
referencing Volunteer is
not unique because
there can be many
RegistrantAttendance for
the same Volunteer.

| also found 9 query driven indexes by predicting what columns will be commonly queried.

In the following table | will indicate the name of the column and the reason why | considered

necessary to index them.

Column

Unique?

Reason

Person.HomePhone

Not unique

When parents register a child, they
will have to search their child in the
app by the phone number.

EventSchedule.EventStartDate

Not unique

This field will be used in reports and
also when a child is being registered
it will be used to pull current events.

EventSchedule.EventEndDate

Not unique

This field will be used in reports and
also when a child is being registered
it will be used to pull current events.

EventGgroup.AgeStartYear

Not unique

When a child is registered to an
event the app will suggest the age
group a child should check in; this
field indicates the start age range
value.

EventGgroup.AgeEndYear

Not unique

When a child is registered to an
event the app will suggest the age
group a child should check in; this
field indicates the End age range
value.

RegistrantAttendance.PickupCode

Not unique

When a child is either checked-in or
checked-out the app has to scan the
QR code which contains the
PickupCode.

RegistrantAttendance.RegistrationDate

Not unique

When a child is checked-out the app
has to scan the QR code which
contains the PickupCode and it will
also use the registration Date, and
classroom to validate that they are
checking out the correct child.

Page 37 of 58

EventSchedule.RegistrationStartDate Not unique | When a parent registers their child
in a specific event the app will query
the EventSchedule table asking if the
current time is in between the
Registration StartDate and
Registration End date.
EventSchedule.RegistrationEndDate Not unique | When a parent registers their child
in a specific event the app will query
the EventSchedule table asking if the
current time is in between the
Registration StartDate and
Registration End date.

MyKids-CheckIn Index Creation

Here is a screenshot demonstrating creation of all my foreign key indexes and the query driven
indexes. | added the CREATE INDEX commands to the end of the SQLScript.sql file.

SOLScript.sql - DE..PETBVWB\dayiT (51))* + X ery14.5q - not connected* hd
/* * * ***k¥Create Indexe * * /

CREATE INDEX AddressStateIdx ON Address(Stateld);
CREATE INDEX PersonAddressIdx ON Person(AddressId);
CREATE INDEX ParentChildIdxl ON ParentChild(ParentId);
CREATE INDEX ParentChildIdx2 ON ParentChild (ChildId);
CREATE INDEX CampusStateIdx ON Campus(Stateld);
CREATE INDEX BuildingCampusIdx ON Building(CampusId);
CREATE INDEX RoomBuildingIdx ON Reom(BuildingId);
CREATE INDEX EventCampusIdx ON Event(CampusId);
CREATE INDEX EventScheduleEventIdx ON EventSchedule(EventId);
CREATE INDEX EventGroupEventIdx ON EventGroup(EventId);
CREATE INDEX ClassEventSchedIdx ON ClassroomAssignment(EventScheduleld);
CREATE INDEX ClassEventGroupIdx ON ClassroomAssignment(EventGroupld);
CREATE INDEX ClassRoomIdx ON ClassroomAssignment(RoomlId);
CREATE INDEX ClassAssignByIdx ON ClassroomAssignment(AssignmentById);
CREATE INDEX VolunteerPersonIdx ON VolunteerAssignment(PersonId);
CREATE INDEX VolunteerClassIdx ON VolunteerAssignment(ClassroomId);
CREATE INDEX VolunteerAssignIdx ON VolunteerAssignment(AssignmentById);
CREATE INDEX RegAttEventSchedIdx ON RegistrantAttendance(EventScheduleld);
CREATE INDEX RegAttPersonIdx ON RegistrantAttendance(PersonId);
CREATE INDEX RegAttClassIdx ON RegistrantAttendance(ClassroomId);
CREATE INDEX RegAttRegByIdx ON RegistrantAttendance(RegisteredById);
CREATE INDEX RegAttCheckInIdx ON RegistrantAttendance(CheckInById);
CREATE INDEX RegAttCheckOutIdx ON RegistrantAttendance(CheckOutById);
CREATE INDEX PersonHomePhoneIdx ON Person(HomePhone) ;
CREATE INDEX EventSchedStartDateIdx ON EventSchedule(EventStartDate);
CREATE INDEX EventSchedEndDateIdx ON EventSchedule(EventEndDate);
CREATE INDEX EventSchedRegStartDateIdx ON EventSchedule(RegistrationStartDate)
CREATE INDEX EventSchedRegEndDateIdx ON EventSchedule(RegistrationStartDate);
CREATE INDEX EventGroupAgeStartIdx ON EventGroup(AgeStartYear);
CREATE INDEX EventGroupAgeEndIdx ON EventGroup(AgeEndYear);
CREATE INDEX RegAttPickupIdx ON RegistrantAttendance(PickupCode);

—— Bt e =

122% -

& Messages
Commands completed successfully.

122% ~
@ Query executed successfully. DESKTOR-P6TBVVB\SOLEXPRESSD... | DESKTOP-PETBVVB\dayi7 ... - MyKidsCheckin | 00:00:00 | 0 rows

Page 38 of 58

T

MyKids-CheckIn Transactions

The first use case for MyKids-Checkln is the “New Family Registration” use case listed below.
New Family Registration Use Case

1. The person visits the kiosk located where the app is installed.

2. The person will click on the “Create New Family” option.

3. The person selects the campus they usually attend to; the app will then ask them if the
person they are entering information for is a parent or a child. If it is a child they will
have to extra information, like medical alerts (e.g., allergies, special needs, medication,
etc.) or custodial information. Once all information is entered the new family is created
in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the
current service/event. If they select yes, the app will printout the badges that will be
used in the check-in and check-out process.

For this use case, | will implement a transaction that creates new family record, using SQL
Server. | created 2 stored procedures: “addNewParent”, which adds a new parent and
“addNewChild”, that will be used to add a child or children a parent may have.

Here are screenshots of my 2 stored procedure definition.

SQLQueryB.sq! - DE..6TBVWE\dayi7 (51" + X [Eo R e ST e SQL Transaction Sc...6TBVVB\dayi7 (52)" SQLScript.sql - DE..PETEVVB\dayi7 (54)"
=/CREATE PROCEDURE addNewParent
@v_Address1 VARCHAR(255),
(@v_Address2 VARCHAR(255),
@v_City VARCHAR(255),
@v_StateTd DECTMAL(12),
@v_PostalCode VARCHAR(10),
@v_FirstName VARCHAR(64),
@v_MiddleName VARCHAR(64),
@v_LastName VARCHAR(64),
@v_Gender CHAR(1),
@v_DateOfBirth DATE,
(@v_EmailAddress VARCHAR(255),
(@v_HomePhone VARCHAR(18),
@v_Userllame VARCHAR(64),
@v_EncryptedPassword VARCHAR(28),
(@_MobilePhone VARCHAR(18),
@v_MaritalStatus CHAR(1),
@v_GovIssuedId VARCHAR(20),
@v_TypeGovIssuedID CHAR(1) -

[«

as
FBEGIN
DECLARE @v_PersonId DECIMAL(12)
DECLARE @v_AddressId DECIMAL(12)
INSERT INTO Address(Addressi, Address2, City, Stateld, PostalCode)
VALUES (@v_Addressl,@v_Address2, @v_City, @v_StateId, @v_PostalCode);
SELECT @v_AddressId=SCOPE_IDENTITY(); --I retrieve the identity for Address table to use it in the Person insert.

INSERT INTO Person(AddressId, FirstName, MiddleName, LastName, Gender, DateOfBirth, EmailAddress,
HomePhone, PersonType)
VALUES(@v_AddressId, @v_FirstName, @v_MiddleName, @v_LastName, @v_Gender, @v_DateOfBirth, @v_EmailAddress,
@v_HomePhone, 'A");
SELECT @v_PersonId=SCOPE_IDENTITY(); --I retrieve the identity for Person table to use it in the Adult insert.

INSERT INTO Adult(PersonId, UserName, EncryptedPassword, MobilePhone, MaritalStatus, GovIssuedTd, TypeGovIssuedID)
VALUES(@v_PersonId, @v_UserName, @v_EncryptedPassword, @v_MobilePhone, @v_MaritalStatus, @v_GovIssuedId, @v_TypeGovIssuedID);

END <
1% -4 3

B Messages

Commands completed successfully. -

-
121% -

@ Query executed successfully. DESKTOP-PETBVVE\SQLEXPRESSD... DESKTOP-P6TBVVB\dayi7 ... MyKidsCheckln ' 00:00:00 O rows

Page 39 of 58

SQLQuery13.5ql - D...6TBYVB\dayi7 (56))° + X ol S T R PP e SQLQuery11.5q] - not connected SQLScript.sql - DE...PETBVVBAdayi7 (67))
~[REATE PROCEDURE [dbo].[addNewChild]
@v_AddressTd DECTIMAL(12),
@v_FirstName VARCHAR(64),
@v_MiddleName VARCHAR(64),
@v_LastName VARCHAR(64),
@v_Gender CHAR(1),
@v_DateOfBirth DATE,
@v_EmailAddress VARCHAR(255),
@v_HomePhone VARCHAR(1@),
@v_NickName VARCHAR(100@),
@v_Allergies VARCHAR(108@),
@v_Conditions VARCHAR(10@0),
@v_CustodialInfo VARCHAR(1000),
@v_ParentId DECIMAL(12),
= @ChildRelationship VARCHAR(2) --'F' Foster Child
--"G' Guest Child
--'M" Minor Child

[«

As
ZIBEGIN
DECLARE @v_ChildId DECIMAL(12)

E INSERT INTO Person(AddressId, FirstName, MiddleName, LastName, Gender, DateOfBirth, EmailAddress,
HomePhone, PersonType)
VALUES(@v_AddressId, @v_FirstMame, @v_MiddleName, @v_LastMame, @v_Gender, @v_DateOfBirth, @v_EmailAddress,
@v_HomePhone, 'C');
SELECT @v_ChildId-SCOPE_TDENTITY(); --I retrieve the identity for Person table to use it in the Child insert.

= INSERT INTO Child(PersonId, NickMame, Allergies, Conditions, CustodialInfo)
VALUES (@v_ChildId,@v_NickName, @v_Allergies, @v_Conditions, @v_CustodialInfo)

= INSERT INTO ParentChild(ParentId, ChildId, ChildRelationship)
VALUES(@v_ParentId, @v_ChildId, @ChildRelationship)
END

121 % |
B Messages

Commands complsted successfully. -

v
21% -

@ Query executed successfully. DESKTOP-PGTBVVB\SQLEXPRESS0... DESKTOP-PGTBVVB\dayi7 ... =MyKidsCheckin 00:00:00 0 rows

Stored Procedure: “addNewParent”

| gave it parameters that correspond to the Address, Person and Adult

The column Person.CreatedDate is always the current date, for which | added a default constraint
for this column which will use the getdate() function from SQL Server so | do not need a
parameter for it. | also do not need a parameter for Person .PersonType since this procedure will
always be used to add a new parent so | hardcode the character ‘A’. | added a default constraint
to Adult.IsVolunteer of a value of 0. Since this procedure will not be used to add a volunteer, |
will insert the Adult data using the default value.

The primary keys for Address and Person table are Identity fields, which Is why do not need to
pass these values

Inside the stored procedure, there are 3 insert statements to insert into the 3 respective tables.

Here is my screenshot of my stored procedure execution.

Page 40 of 58

SQL_Transaction_Sc..6TBVVE\dayi7 (52)) + > EEelRSayTa e R a0] -
—IBEGIN TRANSACTION AddNewParent; +
-
—IEXECUTE addNewParent '4410 N state Road 7',NULL,'Fort Lauderdale',9,33019, 'Mike','J", 'Rochford’,'M",'@7/07/1968", 1
'mrochford@whoknows.com', '9542345678', 'mrochford', 'mypassword234', '9543456789','M', 'A3456-34R33-232323','D’ L
COMMIT TRANSACTION AddNewPar‘en‘t;l
-
121% -4 3
Bl Messages
-
(1 row affected)
(1 row affected)
{1 row affected) -
121% -
@ Query executed successfully, DESKTOP-P6TBVVB\SQLEXPRESS0... DESKTOP-PETBVVB\dayi7 .. MyKidsCheckin 00:00:00 | 0 rows

Stored Procedure: “addNewChild”

| gave it parameters that correspond to the Person, Child and ParentChild tables.
Inside the stored procedure, there are 3 insert statements to insert into the 3 respective tables.

Here is a screenshot of my stored procedure execution.

S0L_Transaction_Sc...6TBVVB\dayi7 (54))* + > jEelRelit ey T tel fafely Ty 2 SQLScript.sql - DE..PETBVVB\dayi7 -
%
-BEGIN TRANSACTION AddNewChild; =
—EXECUTE addNewChild 1, "Joshua','M', 'Rochford','M',"'12/7/2010", ' jrochford@whoknows.com®, '345678987¢6" ,
'Josh', 'eggs', "none', "none’,1,'M"' T
COMMIT TRANSACTION AddNewChild;
hd
121% -4 »
E‘ﬁ Messages
-
{1 row affected)
{1 row affected)
{1 row affected)
e
121% -~
@) Query executed successfully. DESKTOP-PGTBVVB\SOLEXPRESSD... | DESKTOP-PGTBVVB\dayi7 .. MyKidsCheckin | 00:00:00 | 0 rows

Page 41 of 58

The second use case for MyKids-Checklin is the “New Volunteer Registration” use case listed
below.

New Volunteer Registration Use Case

1. The person visits the kiosk where the app is installed.

2. The person will click on the “Registration to Volunteer”.

3. The person selects the campus they usually attend to and enters all the required
information. Once all the information is entered, the Volunteer is created in the
database as a Volunteer with a pending status.

4. The volunteer will be contacted in a few days for finger printing for background
check. If the person passes the background check, he will be approved to volunteer,
and his status will be changed to approved.

For this use case, | will implement a transaction that creates new volunteer record, using SQL
Server. | created a stored procedure: “addNewVolunteer”, which adds a new volunteer.

Here is a screenshot of my stored procedure definition.

SOLQuery13.sql - D...6TBVB\dayi? (54))* + X [COMIE o Rt e SQLScript.sql - not connected
~/CREATE PROCEDURE addNewVolunteer
@v_Address1 VARCHAR(255),
@v_Address2 VARCHAR(255),
@v_City VARCHAR(255),
@v_Stateld DECIMAL(12
@v_PostalCode VARCHAR(1@),
@v_FirstName VARCHAR(64),
@v_MiddleName VARCHAR(64),
@v_LastName VARCHAR(64),
@v_Gender CHAR(1),
@v_DateOfBirth DATE,
@v_EmailAddress VARCHAR(255),
@_HomePhone VARCHAR(10), i1
@v_UserName VARCHAR(64),
@v_EncryptedPassword VARCHAR(2@)
@v_MobilePhone VARCHAR(18),
@v_MaritalStatus CHAR(1),
@v_GovIssuedId VARCHAR(20),
@v_TypeGovIssuedID CHAR(1), --'S' State ID, 'D' Drivers License
@v_BackgroundCheckStatus CHAR(1), --'C' Claar, 'N' Consider, 'P' Pending
@v_BackgroundCheckDate DATETIME,
@v_NolunteerType CHAR(1) --'T' Teacher; 'L' Team Leaders 'A' Admin

» 4]

as
=BEGIN
DECLARE @v_PersonId DECIMAL(12)
DECLARE @v_AddressId DECIMAL(12)
INSERT INTO Address(Addressl, Address2, City, Stateld, PostalCode)
VALUES (@v_Address1,@v_Address2, @v_City, @v_Stateld, @v_PostalCode);
SELECT @v_AddressId=SCOPE_IDENTITY(); --I retrieve the identity for Address table to use it in the Person insert.
INSERT INTO Person(AddressId, FirstName, MiddleName, LastName, Gender, DateOfBirth, EmailAddress,
HomePhone, PersonType)
VALUES(@v_AddressId, @v_FirstName, @v_MiddleName, @v_LastName, @v_Gender, @v_DateOfBirth, @v_EmailAddress,
@v_HomePhone, 'A');
SELECT @v_PersonId=SCOPE_IDENTITY(); --I retrieve the identity for Person table to use it in the Adult insert.
INSERT INTO Adult(Personld, UserName, EncryptedPassword, MobilePhone, MaritalStatus, GovIssuedId, TypeGovIssuedID, IsVolunteer)
VALUES(@v_PersonId, @v_Useriame, @v_EncryptedPassword, @v_MobilePhone, @v_MaritalStatus, @v_GovIssuedId, @v_TypeGovIssuedID, 1);
INSERT INTO Volunteer(Personld, BackgroundCheckStatus,BackgroundCheckDate,VolunteerType) VALUES(@v_PersonId, @v_BackgroundCheckStatus, @v_BackgroundCheckDate, @+

1% - 4 »
B Messages
Commands cempleted successfully. -
-
121% ~
@ Query executed successfully. DESKTOP-PGTBVVB\SQLEXPRESSD... DESKTOP-PGTBVVE\dayi7 ... MyKidsCheckin | 0D:00:00 | 0 rows

Stored Procedure: “addNewVolunteer”

| gave it parameters that correspond to the Address, Person, Adult and Volunteer.

The column Person.CreatedDate is always the current date, for which | added a default constraint
for this column which will use the getdate() function from SQL Server so | do not need a

Page 42 of 58

parameter for it. | also do not need a parameter for Person .PersonType since this procedure will
always be used to add a new volunteer so | hardcode the character ‘A’. | added a default
constraint to Adult.IsVolunteer of a value of 0. Since this procedure will be used to add a
volunteer | will assign the value of 1.

The primary keys for Address and Person table are Identity fields, which Is why do not need to
pass these values

Inside the stored procedure, there are 4 insert statements to insert into the 4 respective tables.

Here is a screenshot of my stored procedure execution.
T PN scx.oncoction Sc..STEVWENdoyi 57 = < T

=/BEGIN TRANSACTION addNewVolunteer

r - K

—IEXECUTE addNewVolunteer '5820 W Sample RD',NULL, 'Coral Springs',9,'33867','Damaris’ NULL,'Altamirano’,'F','12/12/1984", 'damaltamir22@gmail.com’,

19542789876, 'damaltamir','123456", '3456789876" ,'M', 'A32457-6644535354 ', 'D','p', --'C’ Clear, 'N' Consider, 'P' Pending
'94/12/2019', 'T" --"T' Teacher; 'L' Team Leaders 'A’' Admin i
COMMIT TRANSACTION addNewVolunteer

21% =~ 4
W Messages

(1 row affected)
(1 row affected)
(1 row affected)

(1 row affected)
-

121% ~

@ Query executed successfully. DESKTOP-PETBVVB\SQLEXPRESSO... DESKTOP-PGTBVVB\dayi7.. MyKidsCheckin | 00:00:00 0rows

The third use case for MyKids-Checkln is the “Setting up classrooms for check-in” use case listed

below.
Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.

2. The team leader will select the service/event and clicks on the “Open Classroom”
option.

3. The team leader selects the Event and the event group (e.g. age group) with the
classroom and assigns the teacher/volunteers.

For this use case, | will implement a transaction that creates new classroom assignment record,
using SQL Server. | created a stored procedure: “addClassroomAssignment”.

Here is a screenshot of my stored procedure definition.

Page 43 of 58

~/CREATE PROCEDURE addClassroomAssignment
(@v_EventScheduleId DECIMAL(12),
@v_EventGroupId DECIMAL(12),
@v_RoomId DECIMAL(12),
@v_AssignmentById DECIMAL(12),
@v_Notes VARCHAR(18@@),
@v_PersonId DECIMAL(12)

=

+

-
u

AS
FIBEGIN
DECLARE @v_ClassroomId DECTMAL(12)

= INSERT INTO ClassroomAssignment(EventScheduleId, EventGroupId, RoomId, AssignmentById, Notes)
VALUES (@v_EventScheduleld, @v_EventGroupld, @v_RoomId, @v_AssignmentById, @v_Notes)
SELECT @v_ClassroomId=SCOPE_IDENTITY(); --I retrieve the identity for Classroom table to use it in the VolunteerAssignment insert.

INSERT INTO VolunteerAssignment(PersonId, Classroomld, AssignmentById)
VALUES (@v_Personld,@v_ClassroomId,@v_AssignmentById)

121% ~ 4

Bl Messages
Commands completed successfully.

121% ~
DESKTOP-P6TBVVB\SQLEXPRESSD... DESKTOP-PGTBVVB\dayi7 ... MyKidsCheckin | D0:00:00 0 rows

@) Query executed successfully.

Inside the stored procedure, there are 2 insert statements to insert into the 2 respective tables.

Here is a screenshot of my stored procedure execution.

+
=
~IBEGIN TRANSACTION addClassroomAssignment -
EXECUTE addClassroomAssignment 5, 7, 9, 4, NULL,13
COMMIT TRANSACTION addClassroomAssignment
-
133% ~ 4 »
B Messages
-
(1 row affected)
(1 row affected)
-
133% -
@) Query executed successfully. DESKTOP-PGTBVVB\SQLEXPRESSO... | DESKTOP-PGTBVVB\dayi7 ... | MyKidsCheckln | 00:00:00 | 0 rows

Page 44 of 58

MyKids-ChecklIn History

In reviewing my DBMS physical ERD, one piece of data that would obviously benefit from a
historical record is the volunteer’s background check date change in the Volunteers’ table. Such a
history would help me determine the number of background checks done in a specific period. My
new structural database rule is: Each volunteer may have many background check date changes;
each back-ground check date change is for a volunteer.

My updated conceptual ERD and structural rules including my new database rule are below:

‘‘‘‘‘

ClassroomAssignment {y—————————have

Chi

d ParentChild

VolunteerAssignment have .
Volunteer BackgroundCheckChange

Page 45 of 58

Below are
italicized.

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

my structural database rules modified to reflect the new entities. The new ones are

Each Person is associated with one Campus; Each Campus may be associated with
many Persons.

Each Event is associated with one Campus; Each Campus may be associated with
many Events.

Each Adult may be associated to one or many children. A Child is associated with one
or many Adults.

Each Event may be associated to many Event Schedule; An Event Schedule is
associated to one Event.

An Event Schedule may be associated to many Registrant Attendance; A Registrant
Attendance is associated to one Event Schedule.

A Person may be associated to many Registrant Attendance; A Registrant
Attendance is associated to one Person.

Each Event Schedule may be associated with many Classroom Assignments; Each
Classroom Assignment is associated with one Event Schedule.

Each Event may be associated to many Event Groups; An Event Group is associated to
only one Event.

A Volunteer may be associated with many Volunteer Assignments; A Volunteer
Assignment is associated to one Volunteer.

A Classroom Assignment may be associated to many Registrant Attendances; A
Registrant Attendance is associated to one Classroom Assignment.

An Event Group may be associated to many Classroom Assignment; A Classroom
Assignment is associated to one Event Group.

Each Campus may be associated to many Buildings; A Building is associated to one
Campus.

Each Building may be associated to many Rooms; A Room is associated to one
Building.

A Room may be associated to many Classroom Assignments; A Classroom
Assignment is associated to one Room.

Each person is an adult or child.

Each adult is a volunteer, or none.

A person lives at an address; Each address is associated with one or many persons.
Each address has a state; Each state may be associated with many addresses.

Each volunteer may have many background check date changes; each back-ground
check date change is for a volunteer.

Page 46 of 58

| added the BackgroundCheckChange entity and related it to Volunteer table. My updated

DBMS physical ERD is below.

Buildingld
Campusld
Name
Description
NumberFloor

DECIMAL(12)
DECIMAL(12)
VARCHAR(100)
VARCHAR(1000)
DECIMAL(2)
VARCHAR(1000)
DECIMAL(1)

PK |Roomid
FK1 |Buildingld
Name

DECIMAL(12)
DECIMAL(12)
VARCHAR(100)
VARCHAR(10)
DECIMAL(5)

RoomNumber

Capacity
Floor

PK | EventGroupld | DECIMAL(12)

FK1 | Eventid DECIMAL(12)
Name VARCHAR(255)
Description VARCHAR(1000)
AgeStartyear | DECIMAL(2)
AgeEndYear DECIMAL(2)
Active DECIMAL(1)

have

PK | Classroomid

DECIMAL(12)

FK1 |EventScheduleld |DECIMAL(12)

FK2 |EventGroupld DECIMAL(12)

FK3 |Roomlid DECIMAL(12)
AssignmentDate | DATETIME

FA |AssignmentByld | DECIMAL(12)
Notes VARCHAR(1000)

has

have

PK VolunteerAssignmentld

DECIMAL(12)

FK1 Personld DECIMAL(12)
FK2 Classroomid DECIMAL(12)
AssignmentDate DATETIME

F3 AssignmentByld DECIMAL(12)

Campusld
Name
Address1
Adress2
City
Stateld
PostalCode
Active

PK [Eventid

FK1 |Campusld
Name
Description

RegistrationCheckinType

Active

DECIMAL(12)
VARCHAR(255)

have

PK

VARCHAR(255)
VARCHAR(255)
VARCHAR(255)
DECIMAL(12)
VARCHAR(10)
DECIMAL(1)

H O]
PK |Personid DECIMAL(12) ||| i =

Addressi VARCHAR(255)
Address2 VARCHAR(255) H

City VARCHAR(255)

FK1 |Stateld DECIMAL(12)

PostalCode VARCHAR(10)

has

PK | StateiD DECIMAL(12)
StateName | VARCHAR(25S)
StateAbbrev | VARCHAR(2)

Lye

Personid
Addressid
FirstName
MiddleName
LastName
Gender
DateOfBirth
EmailAddress
HomePhone
CreatedDate
ModifiedDate
PersonType
Active

e ey

TypeGovissuediD

Personid

DECIMAL(12)
VARCHAR(64)
VARCHAR(20)
VARCHAR(10)
CHAR(1)
VARCHAR(20)
CHAR(1)
DECIMAL(1)

UserName
EncryptedPassword
MobilePhene
MaritalStatus
GovissuedID

IsVolunteer

PK | BackgroundChangelD DECIMAL(12)
OldBGChangeDate DATETIME
NewBGChangeDate DATETIME

FK | Personid DECIMAL(12)
ChangeDate DATETIME

have.

PK |EventScheduleld DECIMAL(12)
FK1 |Eventid DECIMAL(12)
Date DATETIME
EventEndDate DATETIME
RegistrationStantDate | DATETIME
RegistrationEndDate | DATETIME
CreatedDate DATETIME
have
Registrantld DECIMAL(12)
EventScheduleld | DECIMAL(12)
Personid DECIMAL(12)
FK3 | Classroomid DECIMAL(12) =)
PickupCode VARCHAR(10)
RegistrationDate | DATETIME
FK4 |RegisteredByld DECIMAL(12)
CheckinDate DATETIME
FKS | CheckinByld DECIMAL(12) o
TypeCheckin CHAR(1)
CheckOutDate | DATETIME
FK6 |CheckOutByld DECIMAL(12)
TypeCheckOut | CHAR(1)
Notes VARCHAR(1000)

.

Background

G

ICheckStatus
heckDate

DATETIME

Active

VolunteerType

CHAR(1)
DECIMAL(1)

The BackgroundCheckChange entity is present and linked to Volunteer entity. Below are the

attributes | added and why.

Pag

e 47 of 58

has

Attribute

Description

BackgroundCheckChangeld

This is the primary key of the history table. It
is a DECIMAL(12) to allow many values.

OldBGChangeDate

This is the BackgroundCheckDate before the
change. The data type mirrors the
BackgroundCheckDate datatype in the
Volunteer table.

NewBGChangeDate

This is the BackgrounCheckDate after the
changes. The data type mirroes the
BackgroundChackDate data type in the
volunteer table.

Personid

This is a foreign key to the Volunteer table, a
reference to the Volunteer that had the
change in the backgroundcheckdate.

ChangeDate

This is the date the nacground chec change
occurred, with a DATETIME data type.

Here is a screenshot of my table creation, which has all of the same attributes and datatypes as

indicated in the DBMS physical ERD.

Page 48 of 58

SQLQueryS.sql - DE...6TBVVB\dayi7 (56))* + > [Helkaaass Iy Mly:)
-ICREATE TABLE BackgroundCheckChange(
BackgroundCheckChange DECIMAL(12) NOT NULL IDENTITY PRIMARY KEY,
01dBGChangeDate DATETIME NOT NULL,
NewBGChangeDate DATETIME NOT NULL,
PersonId DECIMAL(12) NOT NULL FOREIGHN KEY REFERENCES Volunteer(PersonId),

ChangeDate DATETIME NOT NULL

(AL «

);

CREATE INDEX Volunteer_BGChangeIDX OMN Backgr‘oundCheckChange{Per‘sonId|};

133% -~ 4 3
E]i Messages
Commands completed successfully. -
b

133% -~
DESKTOP-P&TBVVB\SQLEXPRESS0... | DESKTOP-PGTEVVB\dayi7 ... | MyKidsCheckin | 00:00:00 | 0 rows

@ Query executed successfully.

Page 49 of 58

Here is a screenshot of my trigger creation which will maintain the BackgroundCheckChange
table.

SOLQueryS.sql - DE..6TBVVB\dayi7 (36))* = > [Eeligayreiat=s]] =1y 000 P)]
- CREATE TRIGGER BackgroundCheckChangeTrigger
ON Volunteer
AFTER UPDATE

» 4k

AS|
- BEGIN
DECLARE @0ldBGCheckDate DATETIME = (SELECT BackgroundCheckDate FROM DELETED); u|
DECLARE @NewBGCheckDate DATETIME = (SELECT BackgroundCheckDate FROM INSERTED);
DECLARE {@PersonId DECIMAL(12) = (SELECT PersonId FROM INSERTED);
= IF (@01dBGCheckDate <> @MewBGCheckDate)
- INSERT INTO BackgroundCheckChange(0ldBGChangeDate, NewBGChangeDate, Personld)
VALUES(@01dBGCheckDate, @NewBGCheckDate, @Personld);
END;
133% = 4 »
Eﬁ Messages
Commands completed successfully. -
133% -
@ Query executed successfully. DESKTOP-PETBVVB\SOLEXPRESSD... | DESKTOP-PETBYVB\dayi7 ... | MyKidsCheckln | 00:00:00 | 0 rows
Code Description
CREﬁTE TR(IjGEERk h This starts the definition of the trigger and
BackgroundCheckChangeTrigger i . ”
ON Volunteer names., it Bf'aclfgroundCheckChangeTrlgger .
AFTER UPDATE The trigger is linked to the Volunteer table
and is executed after any update to that
table.
AS This is the part of the syntax starting the
BEGIN .
trigger block.

BackgroundCheckDate FROM DELETED); .
DECLARE @NewBGCheckDate DATETIME - (seLect | date referencing the DELETED and INSERTED

BackgroundCheckDate FROM INSERTED); pseudo tables, respectively.
DECLARE @PersonId DECIMAL(12) = (SELECT
PersonId FROM INSERTED);

IF (@01dBGCheckDate <> @NewBGCheckDate) This check ensures action is only taken if the
background check date has been updated.
INSERT INTO This inserts the record into the

BackgroundCheckChange (01dBGChangeDate,

NewBGChangeDate, PersonId) BackgroundCheckChange table. The primary

ket is set by the IDENTITY. The old and new
BGCheckdates are used from the variables.

Page 50 of 58

VALUES (@01dBGCheckDate, The Personld is obtained from the INSERTED
@NewBGCheckDate, @Personld); pseudo table. The ChangeDate field has a
default constraint that is assigned the
getdate() value.

END; This ends the trigger definition.

First, | select all the records from my Volunteer table.

SQLQueryt.sal - DE. STEWWE\day7 (550 = X
SELECT * FROM Volunteer;| =
il
-

3% -

B Resuts [Messages

BackgroundCheckStatus BackgroundChechkDate VolunteerType Active

1 20190412 00:00:00000 T 1

2 C 201904-1200:00:00000 T 1

3 C 20190412 00:00:00000 T 1

4 C 201904-1200:00:00000 T 1

5 C 20190412 00:00:00000 T 1

6 9 C 2019-04-1200:00:00000 T 1

7 10 C 20190412 00:00:00000 T 1

3 11 C 2019-04-1200:00:00000 T 1

t] 12 C 20190412 00:00:00000 T 1

13 C 2019-04-1200:00:00000 T 1

1 14 C 20190412 00:00:00000 T 1

12 15 C 2019-04-1200:00:00000 T 1
@) Query executed successfully, DESKTOP-P&TBVVB\SQLEXPRESSD... | DESKTOP-PGTBVVB\dayi7 ... MyKidsCheckln | 00:00:00 | 12 rows

Next, | will update the BackgroundCheckDate of the Personld 4.
SQLQuery6.sql - DE..6TBVVE\dayi7 (55))" -+ > [T e

—IUPDATE Volunteer SET 5
BackgroundCheckDate = '94/19/2019° =
WHERE PersonId =4;
B -
1353% |-
EW Messages
-
{1 row affected)
(1 row affected)
| |
-
133% -
@) Query executed successfully. DESKTOP-PETBVVEB\SQLEXPRESS0... = DESKTOP-PETBVVB\dayi7 ... | MyKidsCheckin | 00:00:00 0 rows | |

Last, | verify that the BackgroundCheckChange table has a record for tha change done to the
Volunteer table.

Page 51 of 58

SOLCueryb.sgl - DE..6TBVVB\dayi7 (55))" = > pelRtayToid| B el ey lyTauls!

—ISELECT * FROM BackgroundChecklChange;

3

133% -

EE Resuts [l Messages
BackgroundCheckChangeld QldBGChangeDate MewBGChangeDate Personld ChangeDate

1 i1 { 2019-04-12 00:00:00.000 20190419 00:00:00.000 4 201504-15 22:56:18.700

@ Query execute.. | DESKTOP-PGTBVVE\SCQLEXPRESSD... | DESKTOP-PGTBVVB\dayi7 ... | MyKidsCheckin | 00:00:00 | 1 rows

MyKids-CheckIn Question and Query

Question #1

Here is a question useful for the Childrens Minsitry: How many classrooms by age group were
opened for the Event Calvary Kids Check-In in the month of March of 2019 for the 6:00pm
church service?

First, | explain why this question is useful.

The answer can be used to determine how many Volunteers we need to recruit for certain age
groups on a specific service. This will help the team leaders be better prepared with the required
of volunteers. Here is a screenshot of the query | use.

Page 52 of 58

SOL_Transaction_Sc...6TBVVB\dayi (58)) oo R LN T) AR SOLscript.sql - DE...PETBVVE\dayi (56))
=I/*This query answers the question: How many classrooms by age group were opened for the Event Calvary Kids
Check-In in the month of March for the 6:80pm church service?*/'
SISELECT
eg.Name as ClassAgeGroup,
count(c.ClassroomId) as Total_Num_Classrooms_Opened
FROM
EventSchedule AS es INNER JOIN EventGroup AS eg OM es.EventId = eg.EventId and
es.EventId = 1 and ((convert(DATE,es.EventStartDate) >= '83/@1/2019' AND
convert (DATE, es.EventStartDate) <='83/31/2019" AND
convert(TIME,es.EventStartDate) ='18:00"')) LEFT OUTER JOIN
ClassroomAssignment AS ¢ OM c¢.EventScheduleld = es.EventSchedulelId and c.EventGroupIld = eg.EventGroupIld
GROUP BY eg.MName,eg.AgeStartYear
ORDER BY eg.AgeStartYear

[-

133% - 4

F Resuts [Messages

ClassAgeGroup Total_Num_Classrooms_Opened

¢ New boms Dt 3morths 1

TBabies 410 Emerths 3

Babies Tto Smorths 2

Babies 10to 12months 2

Babies 13to 18months 2

Babies 19t0 24 months 2

Toddlers 2 yearcids 4
1
1
1
1
0
0
0
0

B T SR

8 Toddiers Iycarclds
3 Preks

10 Kindergarten

1 1st Grade

12 hdGrade

13 3dGrade

14 %hGrade

15 hGrade

@ Query executed successfully. DESKTOP-P6TBVVB\SQLEXPRESSD... | DESKTOP-P6TBVVB\dayi7 ... | MyKidsCheckin | 00:00:00 | 15 rows

To get the results, | join the EventSchedule to the EventGroup table, and limit the results to those
with the Eventld equal to 1 (that corresponds to the “Calvary Kids Check-In” event) and which
EventStartDate was in the month of March. | then do a LEFT OUTER JOIN with the
ClassroomAssignment table which has the records of my classes opened for a specific
EventSchedule and EventGroup (age group). | use a LEFT OUTER JOIN to be able to get all
EventGoups, even if there were no classes opened for a specific EventGroup. | order the results
by AgeStartYear field from the EventGroup table. To help prove that the query is working
properly, | show the full contents of the ClassroomAssignment and EventSchedule and
EventGroup tables with a simple query:

Page 53 of 58

nent 5QL_Trans SQLQueryé.sql - DE..6TBVVE\dayi7 (55))* + % [-
—ISELECT * FROM EventSchedule AS es TNNER JOIN EventGroup AS eg ON es.EventId = eg.EventId and es.EventId = 1 INNER JOIN =
ClassroomAssignment AS ¢ ON c.EventScheduleId = es.EventScheduleld and c.EventGroupId = eg.EventGroupId -
order by convert(time, es.EventStartDate) desc‘
133% -4 3
Bl Resuts i Messages
Eventld EventStanDat: EventEndDats Dat: Dat: CreatedDat Eventld Mame Descrption AgeStanYear AgeEndYear Active Claz ~
1 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 20190302 17:30:00.000 2019-03-02 19:00:00.000 2019-04-19 23:36:52.383 1 1 New boms Oto 3months Trained nurses 0.0 025 1 1
2 1 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 20190302 17:30:00.000 2019-03-02 19:00:00.000 20190419 23:36:52.383 2 1 Babies 4to 6 months NULL 033 057 1 2
3 1 20190302 18:00:00.000 20190302 19:30:00.000 20190302 17:30:00.000 20190302 19:00:00.000 2019-04-1923:36:52.383 3 1 Babies 7to 9months NULL 058 082 1 3
4 1 1 20190302 16:00:00.000 20190302 19:30:00.000 20190302 17:30:00.000 20190302 19:00:00.000 20190419 23:36:52.383 4 1 Babies 10to 12menths NULL 083 107 1 4
501 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 2019-03-02 17:30:00.000 2019-03-02 19:00:00.000 20190419 23:3652.383 5 1 Babies 13to 18months ~ NULL 108 157 1 5
6 1 1 2019-03-02 18:00:00.000 2019-03-02 19:30:00.000 2019-03-02 17:30:00.000 2019-03-02 19:00:00.000 20190419 23:36:52.383 6 1 Babies 19to 24 months ~ NULL 158 199 1 6
71 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 2019-03-02 17:30:00.000 2019-03-02 19:00:00.000 2019-04-1923:36:52.383 7 1 Toddlers 2 yearolds NULL 200 299 1 7
8 1 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 2019-03-02 17:30:00.000 2019-03-02 19:00:00.000 2019-04-1923:36:52.383 8 1 Toddlers 3 yearolds NULL 300 399 1 8
9 1 1 20190302 16:00:00.000 20190302 19:30:00.000 20190302 17:30:00.000 20190302 19:00:00.000 2019-04-19 23:36:52.383 9 1 Prek 4 NULL 400 199 1 9
0 1 1 20190302 16:00:00.000 20190302 19:30:00.000 20190302 17:30:00.000 20190302 19:00:00.000 20190419 23:36:52.383 10 1 Kindergarten NULL 500 599 1 0
mo1 1 20190302 18:00:00.000 2019-03-02 19:30:00.000 2019-03-02 17:30:00.000 2019-03-02 19:00:00.000 20190419 23:36:52.383 11 1 st Grade NULL 600 699 1 1
12 5 1 2019-03-09 18:00:00.000 2019-03-09 19:30:00.000 2019-03-08 17:30:00.000 2019-03-09 19:00:00.000 20190419 23:3652.387 2 1 Babies 4to & morths NULL 033 057 1 5
13 5 1 2019-03-09 18:00:00.000 2019-03-09 19:30:00.000 2019-03-09 17:30:00.000 2019-03-09 19:00:00.000 20190419 23:36:52.387 2 1 Babies 4to & months NULL 033 057 1 £
1“5 1 20190309 18:00:00.000 2019-03-09 19:30:00.000 2019-03-09 17:30:00.000 2013-03-09 19:00:00.000 2019-04-1923:36:52.387 3 1 Babies Tto 9 months NULL 058 082 1 7
5 5 1 20190309 18:00:00.000 20190309 19:30:00.000 20190309 17:30:00.000 20190309 19:00:00.000 2019-04-1923:36:52.387 4 1 Babies 10to 12menths ~ NULL 083 107 1 £
6 5 1 20190309 18:00:00.000 20190309 19:30:00.000 20190309 17:30:00.000 20190309 19:00:00.000 2019-04-1923:36:52.387 5 1 Babies 13to 18menths NULL 108 157 1 L]
7 5 1 2019-03-09 18:00:00.000 2019-03-09 19:30:00.000 2019-03-09 17:30:00.000 2019-03-09 19:00:00.000 20190419 23:3652.387 6 1 Babies 19to 24 months ~ NULL 158 199 1 L]
18 5 1 2019-03-09 18:00:00.000 2019-03-09 19:30:00.000 2019-03-08 17:30:00.000 2019-03-09 19:00:00.000 20190419 23:3652.387 7 1 Toddlers 2 yearolds NULL 200 299 1 41
19 5 1 20190309 18:00:00.000 2019-03-09 19:30:00.000 2019-03-09 17:30:00.000 2019-03-09 19:00:00.000 2019-04-1923:36:52.387 7 1 Toddlers 2 yearolds NULL 200 299 1 4
0 5 1 20190309 18:00:00.000 2019-03-09 19:30:00.000 2019-03-09 17:30:00.000 2019-03-09 19:00:00.000 2019-04-1923:36:52.387 7 1 Toddlers 2 yearolds NULL 200 299 1 43
21 3 1 20190303 11:00:00.000 20190303 1230:00.000 20190303 10:30:00.000 20190303 12:00:00.000 2019-04-19 23:36:52.387 2 1 Babies 4to 6 morths NULL 033 057 1 z
2 3 1 20190303 11:00:00.000 20190303 1230:00.000 20190303 10:30:00.000 20190303 12:00:00.000 2019-04-19 23:36:52.387 2 1 Babies 4to 6 months NULL 033 057 1 2
n 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 20190303 10:30:00.000 2019-03-03 12:00:00.000 2019-04-1923:36:52.387 3 1 Babies 7to 3 morths NULL 058 082 1 %
2 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 20190419 23:3652.387 4 1 Babies 10to 12months ~ NULL 083 107 1 2%
% 3 1 2019-03-03 11:00:00.000 2019-03-03 1230:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 2019-04-19 23:36:52.387 5 1 Babies 13to 18months NULL 108 157 1 27
% 3 1 20190303 11:00:00.000 2019-03-03 1230:00.000 2019-03-03 10:30:00.000 2013-03-03 12:00:00.000 20130419 23:36:52.387 6 1 Babies 19to 24months NULL 158 199 1 2
7 3 1 20190303 11:00:00.000 2019-03-03 1230:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 20190419 23:36:52.387 7 1 Toddlers 2 yearolds NULL 200 299 1 2
% 3 1 20190303 11:00:00.000 20190303 1230:00.000 20190303 10:30:00.000 20190303 12:00:00.000 2019-04-1923:36:52.387 8 1 Toddlers 3 year-lds NULL 00 199 1 £l
» 3 1 20190303 11:00:00.000 20190303 12:30:00.000 20190303 10:30:00.000 20190303 12:00:00.000 20190419 23:36:52.387 9 1 Prek 4 NULL 400 499 1 k1l
N 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 2019-04-1923:36:52.387 10 1 Kindergarten NULL 500 599 1 2
3 1 2019-03-03 11:00:00.000 2019-03-03 12:30:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 2019-04-19 23:36:52.387 10 1 Kindergarten NULL 500 599 1 k]
2 3 1 20190303 11:00:00.000 2019-03-03 1230:00.000 2019-03-03 10:30:00.000 2019-03-03 12:00:00.000 20190419 23:36:52.387 12 1 nd Grade: NULL 7.00 79 1 u
B 2 1 20190303 2019-03-03 2019-03:03 2019-03-03 20190419 23:36:52.383 1 1 Newboms Oto 3months Trained nurses 0.0 025 1 12
u 2 1 20190303 20190303 20190303 20190303 20190419 23:36:52.383 2 1 Babies 4to 6 months NULL 033 057 1 13
B 2 1 20190303 20190303 20190303 20190303 20190419 23:36:52.383 3 1 Babies 7to 9 months NULL 058 082 1 4
® 2 1 20190303 2019-03-03 20190303 2019-03-03 20190419 23:3652.383 4 1 Babies 10to 12months ~ NULL 083 107 1 AL
@ Query executed successfully. DESKTOP-PGTEVVE\SQLEXPRESSD... | DESKTOP-PGTBVVB\dayi7 ... MyKidsCheckin | 00:00:00 | 43 rows

Upon inspection, you see that there are 43 ClassroomAssignment rows in my database. |
ordererd the records by Time in descendant order so the ones at 6pm would be at the top for
better visibility. There are only 20 classrooms assignments for the month of March at 6:00pm. If
you add up the numbers of my Total Num_Classrooms_Opened it will equal 20. So as is
demonstrated, the query appears to be returning the correct results based upon the question.

Question #2

Here is another question useful for the Childrens Minsitry: How many children and available
seats are, for each opened classroom by age group for the Event Calvary Kids Check-In on
03/03/2019 at the 11:00 am church service?

First, | explain why this question is useful.

The answer can be used to determine what classrooms have been opened for a specific age group
and also to see a total number of children that have checked in a classroom and also the available
seats so far. This way the team leaders will know quickly which classrooms are getting filled up
quickly so they can start preparing a new classroom for that specific age group.

Here is a screenshot of the query | use.

Page 54 of 58

DESKTOP-PGTBVVE...ssroomAssignment DESKTOP-PGTBVVE\...bo.EventSchedule DESKTOP-PETBVVB\...istrantAttendance SQLQueryT.sql - DE..6TBVVB\dayi7 (33))* + X [EelMIglEzTavll oy v et)]
E1/*This query will answer the following question: How many children and available seats are, for each opened classroom
by age group for the Event Calvary Kids Check-In on 83/03/2019 at the 11:00 am church service?*/'

FISELECT
eg.Name as ClassAgeGroup,
ISNULL (r.RoomNumber, 'NOT ASSIGMED') AS RoomNumber,
r.Capacity AS Capacity ,
r.Capacity - count(ra.RegistrantId) AS AvailableSeats,
count(ra.RegistrantId) as Total_Kids

[«

FROM
(EventSchedule AS es INNER JOIN EventGroup AS eg OM es.EventId = eg.EventId and
es.Eventld - 1 and es.EventStartDate - '03/03/2019 11:00' LEFT OUTER JOIN
ClassroomAssignment AS ¢ ON c¢.EventScheduleId = es.EventScheduleId and c.EventGroupId = eg.EventGroupId LEFT OUTER JOIN
Room AS r ON r.RoomId = c.RoomId) LEFT OUTER JOIN
RegistrantAttendance AS ra ON ra.ClassroomId = c.ClassroomId
GROUP BY eg.Name,eg.AgeStartYear,r.RoomMumber, r.Capacity
ORDER BY eg.AgeStartYear,r.RoomNumber

133% ~ 4 »
B Resuts | Bl Messages
a P Capacty Total_Kids
1 | Newboms Oto 3morths | NOTASSIGN NULL NULL 0
2 Babies 410 Emorths 101 = 2 2
3 Bablesétobmonths 102 2 2 1
4 BablesTwoSmonths 103 2 2 3
5 Babies 10to 12 months 104 25 2 3
6 Babies 13lo 1morths 105 5 2 3
7 Babies 19l 24morths 106 5 z 3
& Todders 2yearcids 107 3 z 3
9 Todders 3yearcids 108 3) 2
0 PreK4 107 %) 2
11 Kindergaren 108 %) 2
12 Kindergaren 108 % 2 0
13 1ot Grade NOTASSIGN NULL NULL 0
14 2ndGrade 110 2 2 1
15 adGrade NOTASSIGN NULL NULL 0
16 4hGrade NOTASSIGN NULL NULL 0
17 5th Grade NOT ASSIGN ~ NULL NULL o
€ Query executed successfully. DESKTOP-PETEVVE\SQLEXPRESSD... | DESKTOP-PSTBVVBdayi7 ... | MyKidsCheckin | 00:00:00 | 17 rows

To get the results | joined the EventSchedule, EventGroup, ClassroomAssignment, Room and
RegistrantAttendance tables, and limit the results to those with the Eventld equal to 1 (that
corresponds to the “Calvary Kids Check-In” event) and which EventStartDate equals 03/03/2019
at 11:00 am. | then do a LEFT OUTER JOIN with the ClassroomAssignment table which has the
records of my classes opened for a specific EventSchedule and EventGroup (age group). | use a
LEFT OUTER JOIN to be able to get all EventGoups, even if there were no classes opened for a
specific EventGroup. | then join with the room to be able to get the room number and finally |
join with the RegstrantAttendance table which has the records of all the children registered in
the event. | order the results by AgeStartYear field from the EventGroup table and RoomNumber
from the Room table.

To help prove that the query is working properly, | first added more registrants to the

RegistrantAttendance table and | show the full contents of the ClassroomAssignment and
EventSchedule, EventGroup, Room and RegistrantAttendance tables with a simple query:

Page 55 of 58

QL Queryd.sql - DE.. BTBVWE\dayiT (57))* & X
—ISELECT *
FROM
(EventSchedule AS es INNER JOIN EventGroup AS eg OM es EventId = eg.EventId and b1
es.EventId = 1 INNER JOIN
ClassroomAssignment AS ¢ ON c.EventScheduleId = es._EventScheduleId and c.EventGroupId = eg.EventGroupId INNER JOIN
Room AS r ON r.RoomId = c¢.RoomId) INNER JOIN
RegistrantAttendance AS ra ON ra.ClassroomId = c.ClassroomId
ORDER BY es.EventStartDate
133% - 4 2
EE Resuts fil Messages
Eventld EventStanDat EventEndDat: Dats Dat: CreatedDats Eventld Name Desciption AgeStanYear AgeEndYear Active Clae~
8 2 1 20190303 20130303 20180303 20180303 2019-04-1923:3652383 11 1 1st Grade NULL 600 639 1 2
48 2 1 20190303 20130303 20180303 20180303 2019-04-1923:3652383 11 1 1st Grade NULL 600 639 1 2
50 2 1 20190303 20180303 20180303 20190303 2019-04-1923:36:52383 11 1 1st Grade NULL 600 639 1 2
5 3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-19 233652387 2 1 Babies 4to £ months NULL 033 057 1 2
52 3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-19 233652387 2 1 Babies 4to £ months NULL 033 057 1 2
83 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2015-03-03 10:30:00.000 20190303 12:00:00.000 2019-04-1923:36:52.387 2 1 Babies 4to & months NULL 033 057 1 24
4 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:36:52.387 3 1 Babies 7to $ months NULL 0.58 082 1 25
% 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:36:52.387 3 1 Babies 7to $ months NULL 0.58 082 1 25
% 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 20130303 10:30:00.000 20190303 12:00:00.000 2019-04-1923:36:52.387 3 1 Babies 7to 9 months NULL 0.58 082 1 25
57 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 20130303 10:30:00.000 20190303 12:00:00.000 2019-04-1923:36:52.387 4 1 Babies 10to 12 months NULL 083 1.07 1 26
%8 3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 20130303 10:30:00.000 20190303 12:00:00.000 2019-04-1923:36:52.387 4 1 Babies 10to 12 months NULL 083 1.07 1 26
% 3 1 201903-03 11:00:00.000 20190303 1230:00.000 20190303 10:30:00000 20190303 1200:00.000 2019-04-19 233652387 4 1 Babies 10to 12months NULL 083 107 1 2%
60 3 1 2019-03-0311:00:00000 20190303 1230:00.000 20190303 10:30:00000 20130303 1200:00.000 20150419 233652387 § 1 Babies 13to 18months NULL 108 157 1 27
61 3 1 2019-03-0311:00:00000 20190303 1230:00.000 20190303 10:30:00000 20130303 1200:00.000 20150419 233652387 § 1 Babies 13to 18months NULL 108 157 1 27
62 3 1 2019-03-0311:00:00000 20190303 12:30:00.000 20190303 10:30:00000 20130303 12:00:00.000 20180419 233652387 5 1 Babies 13to 18months NULL 108 157 1 7
6 3 1 20150303 11:00:00000 20130303 12:30:00.000 20130303 10:30:00.000 20130303 12:00:00.000 2013-04-1923:36:52387 6 1 Babies 13to 24 months NULL 158 159 1 28
&4 3 1 20150303 11:00:00000 20130303 12:30:00.000 20130303 10:30:00.000 20130303 12:00:00.000 2013-04-1923:36:52387 6 1 Babies 13to 24 months NULL 158 159 1 28
6 3 1 20190303 11:00:00000 20130303 12:30:00.000 20130303 10:30:00.000 20130303 12:00:00.000 2013-04-1923:36:52387 € 1 Babies 13to 24 months NULL 158 159 1 28
6 3 1 20190303 11:00:00000 20130303 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2015-04-19 233652387 7 1 Toddlers 2 year-olds NULL 200 299 1 2
67 3 1 20190303 11:00:00000 20130303 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2015-04-19 233652387 7 1 Toddlers 2 year-olds NULL 200 299 1 2
6 3 1 20190303 11:00:00000 2013-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2013-04-19 233652387 7 1 Toddlers 2 year-olds NULL 200 2939 1 23
€ 3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:3652387 & 1 Toddlers 3 year-olds NULL 300 399 1 30
n 3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:3652387 8 1 Toddlers 3 year-olds NULL 300 399 1 30
no3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:3652387 § 1 PreK 4 NULL 400 499 1 kil
72 3 1 20190303 11:00:00000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 20130303 12:00:00.000 2019-04-1923:3652387 § 1 PreK 4 NULL 400 499 1 kil
3 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2018-03-03 10:30:00.000 2019-03-03 12:00:00.000 2019-04-19 23:36:52.387 10 1 Kindergarten NULL 5.00 5.99 1 2
43 1 20190303 11:00:00.000 2019-03-03 12:30:00.000 2013-03-03 10:30:00.000 2019-03-03 12:00:00.000 2019-04-19 23:36:52.387 10 1 Kindergarten NULL 5.00 5.99 1 2
B3 1 20190303 12:30:00.000 20190303 10:30:00.000 20190303 12:00:00.000 2019-04-19 23:36:52.387 12 1 2nd Grade NULL 7.00 7.99 1 g
‘ : 3
@ Query executed successfully. DESKTOP-PGTBYVB\SQLEXPRESSD... | DESKTOP-PETBVVB\dayi7 ... MyKidsCheckin | 00:08:00 75 rows

Upon inspection, you see that there are 75 ClassroomAssignment rows in my database. | ordered
the records by EventStartDate. There are only 25 records for the EventStartDate 03/03/2019 at
11:00 am. If you add up the numbers of my Total_Kids it will equal 25. So as is demonstrated,
the query appears to be returning the correct results based upon the question.

Question #3

A useful question from the BackgroundCheckChange history table is: How many volunteer’s
background check date change for specific period by the month? Since background checks have
to be repeated every 7 years, this will help plan ahead of time. In order to provide more data
for this, | changed some backgroundcheckDates. Here is what the BackgroundCheckChange
table looks like after these changes.

50LQueny7.sql - DE...6TBVVB\dayi7 (35))* + X [Qolkaaq e (0L,

SELECT * FROM BackgroundCheckChan e;l

133% -
FH Resuts gl Messages

@) Query executed successfully.

DESKTOP-P6TBYVE\SCQLEXPRESSD...

BackgroundCheckChangeld — OldBGChangeDate MNewBGChangeDate Personld ChangeDate
1 1 2012-04-12 00:00:00.000 2015-04-19 00:00:00.000 4 2013-04-20 01:37:40.093
2 2 2012-04-12 00:00:00.000 2015-04-14 00:00:00.000 7 2015-04-20 01:37:55.000
3 3 2012-03-05 00:00:00.000 2015-03-01 00:00:00.000 11 2013-03-15 01:38:23.853
4 4 2012-04-12 00:00:00.000 2019-02-12 00:00:00.000 12 201302-20 01:38:31.087

DESKTOP-PGTEVVE\dayi7 ...

MyKidsCheckln

00:00:00 | 4 rows

Page 56 of 58

There are a total of 4 records but 2 were changed in the month of April, 1 in March and 1 in
February. Here is a screen shot of my query and the results:

SQLQuery7.sql - DE..6TBVVE\dayi7 (35])* + X [Holame i I N A €19) -
—ISELECT =
DATEMAME (month, E}b}\q\r}\gﬁf[\)}g\‘g\g) as Month, -
Count(BackgroundCheckChangeld) as Toalt_BG_checks_changed -
FROM i
BackgroundCheckChange ;
WHERE
YEAR(ChangeDate) = 2019
GROUP BY DATENAME (month,ChangeDate),MONTH(ChangeDate)
ORDER BY MONMTH(ChangeDate) ;
133% | 4 »
FH Results =l Messages
| Toalt_BG_checks_changed
1 :
2
3
@ Query executed successfully. DESKTOP-PETBVVBYSCOLEXPRESSO... | DESKTOP-PGTBWVB\dayi7 ... = MyKidsCheckin | 00:00:00 | 3 rows

| use the DATENAME function to display the month name and | use the Month function to use it
in my ORDER BY. Since | am running this query for the year 2019, | use the function YEAR to
specify just the year 2019 in the where clause.

MyKids-Checkin Summary and Reflection

My database is for an app that will automate the parent/child registration process and the check-
in and check-out process for the Saturday and Sunday services at my church. When | talked to
the people involved in this process, | noticed that the church would want this same or similar
check-in process for all events. They have different types of events, for the different types of
ministries the church offers. After thinking through, | realized this may become a big database
with a lot of business rules involved, which is why | have narrow it down to the Children’s ministry
check-in process.

This week | was able to identify the structural database rules, based on the use cases; with these
rules it was so easy to identify all the entities involved and the relationships between them.

| made minor changes to the use cases so that it would be clearer to recognize the entities. | was
able to identify the following entities: Campus, Parent, Child, Event, Event Group, Classroom,
Volunteer and Check-in, as well as relationships between them.

This exercise helped me understand the importance of well-defined business rules in an
organization, which is an important part when designing a database.

Page 57 of 58

Week 3 Summary and Reflection Update

This week, | have done many changes to my project. | changed 2 uses cases to be able to reflect
the Specialization-Generalization Hierarchy. | also made changes to the names of a few entities
to better describe its purpose. | change the relation | had of EventGroup/Classroom to
Event/Classroom. | also created a bridge entity to eliminate the M:N relationship between
Event/Classroom.

After making these changes, creating the DBMS Physical EERD was not difficult. | can honestly
say that | feel much better this week with how my database design looks. At the beginning of
the course | was a little bit worried that this project was going to have to many tables and it was
going to be too complex, but after this week, | am excited that this will not be my case.

Week 4 Summary and Reflection Update

| spent more time working on this iteration compared to the last 3. While identifying all the
possible attributes that my entities have, | realized | had new entities to create and others that
were not necessary. Although it was a lot of work, | am happy with what | have accomplished
so far, and to finally see the database | had in paper, implemented in SQL server.

Week 5 Summary and Reflection Update

It’s incredible how | can finally see my database fully functioning. It really took a lot of time
putting together the scripts and populating my tables with somewhat real data to be able to
generate correct results with my queries. Although it was a lot of work, | can say | have really
enjoyed this project. While working on it | have come up with more ideas and changes that
hopefully | will be able to complete as a personal goal.

Page 58 of 58

