
Page 1 of 58

MET CS 669 Database Design and Implementation for Business
Term Project Iteration 5

MyKids-CheckIn Project Direction Overview

I would like to develop an app that automates the Children’s Ministry Check in process for each
service at my church. When all the parties involved use the app, different parties will be able to
have access to different information. Team leaders will be able to have the history of every
person that has volunteered and a list of all the children that have attended a specific date and
time and in what age groups. Teacher/Volunteers will be able to have access to important
information regarding the children checked in to their classroom, like medical alerts, custodial,
pickup authorized list information, notes, etc. Team leaders will be able to manage classrooms
better by having current information on the total of children in each classroom and limiting the
max # of children to stay in compliance with fire code regulations.

Here are some examples of how the application would be used. The team leader will set up the

classrooms in the app and assign the available volunteers to have the classroom ready to check

in. Once classrooms are setup (usually 15 minutes prior to the service start time), parents will

come to a kiosk and type in their previously registered phone number which will display the list

of children they have registered. The app will print out the badges for their children, one badge

per child and one for the parent. The badge will have the child’s name, age group, and QR code.

Parents will go to a classroom assigned to their child’s age group, and the Teacher/Volunteer will

scan the child’s badge to check them into their classroom. After service has ended, parents will

check out their child by bringing the parent badge to be scanned by the teacher. The app will

validate that the QR codes of the parent and child match.

Since all this information is being tracked in the app, Team leaders will be able to pull up the

classroom’s current list, they will also be able to know the exact location of a child, and the exact

time a child was picked up. The database will also store information about the family and

children, like home address, phone number, driver’s license, children’s age, any alert information

(medical, custodial, special needs, etc.), and pick-up list. It will store information about the

different, age groups, classrooms assigned to a specific age group and volunteers’ information. It

will save the Check-in and check-out date and time, classroom and any notes entered by the

volunteers.

The reason I picked this project is that I have volunteered as a teacher and I am also a parent of
2 precious kids which are part of the children’s ministries. The church currently has an app which
has a mixture of an automated and manual process. I understand the need as a volunteer and as
a parent to have an app that will completely automate the current process.

Project Iteration 2: Revision of the Project Direction Overview

Page 2 of 58

Our church has different campuses in different locations, which creates the need to keep track

of what campus a person is attending. Because of this, I added another example of how the

application would be used.

The Admin Team will be able to enter information of all the different campuses and register all

the service/events happening in a specific campus. They will also maintain information regarding

the different buildings and the rooms that can be assigned to an event (e.g., Children’s Ministry

event) They will be able to schedule specific events allowing a person to register in these events,

before a check-in process starts.

MyKids-CheckIn Use Cases and Fields

One important usage of the database is when a person registers their family members.

New Family Registration Use Case

1. The parent/guardian visits the kiosk located where the app is installed.

2. The parent/guardian will click on the “Create New Family” option.

3. The parent/guardian selects the campus they usually attend to, to then proceed to

enter all the required information for them and the child/children and the new family is

created in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the

current service/event. If they select yes, the app will printout the badges that will be

used in the check-in and check-out process.

From the database perspective, this use case requires storing information about the new

family (from steps #2 and #3) and information about the printed badges for the current

service/event (step #4). Steps #1 apply to the user but not the database directly.

Parent/Guardian Fields

Fields What it stores Why it’s Needed.

FirstName This is the first name of the
parent/guardian.

This is necessary for
displaying the
parent/guardian’s name on
the app or used for
addressing any
communication.

LastName This is the last name of the
parent/guardian.

This is necessary for
displaying the
parent/guardian’s last
name on the app or used
for addressing any
communication.

Page 3 of 58

PhoneNumber This is the phone number of
the parent/guardian.

This is necessary to use it to
contact the parent by
sending them text or calling
them if any issue with their
child arises.

Address1 This is the address 1 of the
parent/guardian.

This is used for sending out
mail to the
parent/guardian.

Address2 This is the address 2 of the
parent/guardian.

This is used for sending out
mail to the
parent/guardian.

Page 4 of 58

Fields What it stores Why it’s Needed.

City This is the city of the
parent/guardian.

This is used for sending out
mail to the
parent/guardian.

State This is the state of the
parent/guardian.

This is used for sending out
mail to the
parent/guardian.

ZipCode This is the zip code of the
parent/guardian.

This is used for sending out
mail to the
parent/guardian.

Email This is the email of the
parent/guardian.

This is used for sending out
email to the
parent/guardian.

IdentificationNumber This is the
parent/guardian’s
identification number
(Driver’s license, state id,
etc.)

This is useful when we need
to verify the person is the
parent/guardian, in the
case where they misplaced
the pick-up badge.

IdentificationType This is the type of
identification number the
parent/guardian has
provided. (Driver’s license,
state id, etc.)

This is useful (in
conjunction with the
identification number)
when we need to verify the
person is the
parent/guardian, in the
case where they misplaced
the pick-up badge.

RelationshipToKid This is the type of
relationship they have with
the child. Examples are:
parent, grandparent, step-
parent, foster-parent, aunt,
etc.

This is useful when
addressing communication.

DateOfBirth This is the date of birth of
the parent/guardian.

This is useful to send out
Happy Birthday emails to
the parent/guardian or any
other communication that
can be age specific.

MaritalStatus This is the marital status of
the parent/guardian.

This is very useful for
discipleship.

Gender This is the gender of the
parent/guardian.

This is useful to personalize
communications and send
out emails depending on
gender group events.

Page 5 of 58

Fields What it stores Why it’s Needed.

Campus This is the campus the
parent attends regularly.

This is used to know what
campus a parent usually
attends, this will help
personalize their app view
to only display information
related to the campus or
send mail or email
regarding the campus.

 Child Fields

Fields What it stores Why it’s Needed.

FirstName This field stores the first
name of the child

This is necessary to print
out their name on the
badge or display it on the
screen.

LastName This field stores the last
name of the child

This is necessary to print
out their name on the
badge or display it on the
screen.

NickName This field stores the nick
name of the child.

This is useful to know the
name a child is used to at
home.

DateOfBirth This field stores the date of
birth of the child.

This is used to direct
parents to the correct age
group classroom.

Gender This field stores the gender
of the child.

This is useful for when the
church has events specific
to gender, we can send out
communications to the
correct gender group.

Page 6 of 58

 Alert/Warning List fields

Fields What it stores Why it’s Needed.

TypeOfAlert This field stores the type of
alert a child has. Examples:
allergies, custodial, etc.

This is useful for
categorizing the alerts to
display on the screen.

Description This field stores the
description of the alert.

This is used to display a
detailed description of the
type of alert.

ExpiratonDate This field stores the
expiration date of the alert.

This is useful for displaying
certain alerts only for a
period of time or if not
stored, it will always display
it.

Pick-up List fields

Fields What it stores Why it’s Needed.

FirstName This stores the first name of
a person that is in the pick-
up list of a child

This is useful to display on
the screen to verify that the
person can pick up the child

LastName This stores the last name of
a person that is in the pick-
up list of a child

This is useful to display on
the screen to verify that the
person can pick up the child

PhoneNumber This stores the phone
number of a person that is
in the pick-up list of a child

This is useful to display on
the screen.

Attendee’s Registration Service/Event fields

Fields What it stores Why it’s Needed.

EventScheduleId This stores the unique
identifier of the event
schedule of the
service/Event the
parent/guardian is
registering their kids in.

This is used in the
application to display
information related to a
specific scheduled event.

AttendeeId This stores the unique
identifier of the child or a
person registering for the
service/event.

This is used later to relate
the information of the
event a child/person is
registered and their
information

Page 7 of 58

RegistrationDate This stores the date and
time the child was
registered.

This is used to know the
date and time a child was
registered.

EventGroupId This stores the Event Group
unique identifier which is
the possible age group the
child may be checked in.

This is used to relate the
information of the event
group information

RegistrationCode This stores the unique
registration code for a child.

This is used when
generating the QR code to
be printed on the child’s
badge.

Another important usage of the database is when a Team Leader sets up the classes that will be

available to check in children.

Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.

2. The team leader will select the service/event and clicks on the “Open Classroom”

option.

3. The team leader selects an age group with the classroom and assigns the

teacher/volunteers.

From the database perspective, this use case requires storing information about the

classroom and volunteer assignment (from step #3).

Classroom fields

Fields What it stores Why it’s Needed.

AgeGroup This stores the name of the
age group. Examples: 1st
grade, 2nd grade, etc.

This is useful to display on
the screen.

RoomNumber This stores the room
number.

This is useful to display on
screen to know where the
room is located.

ClassName This stores the room name.
Example: 1st grade A, 1st
grade B, 1st grade C.

This is useful because it is
easier for parents to
remember a letter than a 4
or more-digit number.

ScheduleDate This stores the date the
class was scheduled for
check-in.

This is useful for reporting
purposes and also to display
only the current class
schedule.

Page 8 of 58

MaxNumber This stores the max number
of people allowed in the
room.

This is used when applying
restrictions in check in.

EventScheduleId This stores the unique
identifier of the event
schedule of the
service/Event the
parent/guardian is
registering their kids in.

This is used in the
application to display
information related to a
specific scheduled event.

Volunteer fields

These fields are not stored by this use case but are used to assign the volunteers to a

classroom.

Fields What it stores Why it’s Needed.

FirstName This store the volunteers
first name.

This is useful to display on
the screen.

LastName This stores the volunteers
last name.

This is useful to display on
the screen.

StartDate This stores the date they
became volunteers.

This

LastBackgroundCheck This stores the date of the
last background checked.

This helps team leaders to
make sure they only assign
volunteers that have passed
a background check.

Another important usage of the database is where the teacher/volunteer starts the check in

process.

Classroom check-in/check-out

1. The teacher/volunteer accesses the app from their tablets and signs in with their

credentials.

2. They will see the classroom they are assigned to.

3. When a parent and child print out the badges, they will present the badge with the QR

code to the teacher/volunteer, who will scan the QR code.

4. The teacher/volunteer will add any comments to the child’s record that parents might

share (diaper bag, bottle to be given at certain time, etc.)

5. Once service ends, parent brings the badge to be scanned by the teacher/volunteer,

6. The app will verify that the parent badge matches with the child QR code; if it does it

will check-out the child from the classroom.

Page 9 of 58

From the database perspective, this use case requires storing information about volunteers

sign in (from step#1), the check-in and check-out process (from steps #3, #4, #5 and #6).

Steps #2 displays the classroom information but does not store any information.

Check-in fields

Fields What it stores Why it’s Needed.

CheckIn This field stores the date
and time that a child was
checked in.

This is information that can
be used for reporting.

CheckOut This field stores the date
and time that a child was
checked out.

This is information that can
be used for reporting.

TypeVerificationCheckIn This field stores the type of
verification in the check-in
process. Example: If it was
scanned or manual.

This information is used to
know if the child was
checked in scanning the QR
code from the badge or the
parent did not have the QR
code and it was done
manually.

TypeVerificationCheckOut This field stores the type of
verification in the check-out
process. Example: If it was
scanned or manual.

This information is used to
know if the child was
checked out scanning the
QR code from the badge or
the parent did not have the
QR code and it was done
manually.

Notes This field is used to store
notes regarding the child.

This is useful to store any
instructions given by the
parent at check-in time or
to store any information the
teacher may like to note.

Page 10 of 58

MyKids-CheckIn Structural Rules

New Family Registration Use Case

1. The parent/guardian visits the kiosk located where the app is installed.

2. The parent/guardian will click on the “Create New Family” option.

3. The parent/guardian selects the campus they usually attend to, to then proceed to

enter all the required information for them and the child/children and the new family is

created in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the

current service/event. If they select yes, the app will printout the badges that will be

used in the check-in and check-out process.

For this use case I can see several components involved: the application, the parent using the

application and the database. I will focus on what will be stored in the database. From step # 3, I

see a Campus entity, Parent entity, and Child entity. From step #4, I see an Event entity. Steps #1

and #2 do not reflect any other entity or relationship.

The application will track what campus a parent and child usually attend. For this use case a

Parent or child is associated with a Campus. The application will also track the Event (e.g.,

“Children’s Ministry Sunday Service 9:00 am”), hosted at a specific Campus, a child is registered.

The application also tracks the children that are associated with a parent.

I now have enough information to create some structural database rules. I’ll number them so

that they can later be referred to by number.

First rule,

1. Each Parent is associated with one Campus; Each Campus may be associated with

many Parents.

 I created this structural rule because I infer from the use cases that the application cannot

add a Parent to the database without selecting what campus they attend, which is why I

made this association mandatory (“each Parent is…”). I indicated that it is optional for a

Campus to associate many Parents, to leave room for the fact that a Campus is created

before any Parent is created.

Second rule,

2. Each Event may be associated with many Campuses; Each Campus may be associated

with many Events.

I create this structural rule because I infer from the use cases that each Campus may be

associated with many Events. I indicated that it is optional for a Campus to associate many

Events, to leave room for the fact that a Campus is created before any Event is created. I

Page 11 of 58

made the Event association with the campus optional as well, because the app may let

me create an event that is still not associated with a campus.

Third rule,

3. Each Parent is associated to one or many children. A Child is associated with one or

many Parents.

I created this structural rule because I infer from the use cases that each Parent is entered

in the system as a Parent if they have at least one child. The same way a child may not

be entered in the system without a parent/guardian assign to.

Forth rule,

4. A child may be associated to many events; An event may be associated to many

children.

I created this structural rule because I infer from the use case that a child does not have

to be registered in an event when we add a child in the application for the first time,

making associating optional. The same way, we can create an event and not have any

child registered. This association is optional.

Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.

2. The team leader will select the service/event and clicks on the “Open Classroom”

option.

3. The team leader selects the Event and the event group (e.g. age group) with the

classroom and assigns the teacher/volunteers.

For this use case I can see 3 different entities that are involved in storing data. Classroom entity,

Event entity (e.g., “Children’s Ministry Sunday Service 9:00 am”), Event Group entity (e.g. “2-year

old”) and the Volunteer entity. According to the use case a classroom cannot be setup without

an assigned volunteer and without assigning a specific event and event.

Fifth rule,

5. Each Event may be associated with many classrooms; Each Classroom may be

associated with many Events.

I created this structural rule because I infer from the use cases that each Classroom may

be setup in the application without indicating what event this classroom is assigned to.

Therefore, I make it optional. On the other end, an Event is optional to have an association

with many classrooms, since an Event is created before a classroom is created.

Page 12 of 58

Sixth rule,

6. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

Although it is not explicitly mentioned, it stands to reason that each event group is

associated to one Event since we need to store what event and event group is being

created for, making the participation mandatory between the event group and the event.

However, the association between event and event group is optional since an event can

be added to the system without it being associated to an Event group.

Seventh rule,

7. A volunteer may be associated with one classroom; A classroom is associated to one or

many volunteers.

I created this structural rule based on the use case explanation that when the team leader

sets up a classroom, the application requires you to select at least one volunteer for a

classroom open for the check-in process. Because of this rule, the relation between the

classroom and volunteer is mandatory. On the other end, the relationship between the

volunteer and the classroom is optional, since a volunteer can be added to the application

without being assign to any classroom.

Classroom check-in/check-out

1. The teacher/volunteer accesses the app from their tablets and signs in with their

credentials.

2. They will see the classroom they are assigned to.

3. When a parent and child print out the badges, they will present the badge with the QR

code to the teacher/volunteer, who will scan the QR code.

4. The teacher/volunteer will add any comments to the child’s record that parents might

share (diaper bag, bottle to be given at certain time, etc.)

5. Once service ends, parent brings the badge to be scanned by the teacher/volunteer,

6. The app will verify that the parent badge matches with the child QR code; if it does it

will check-out the child from the classroom.

From this use case, I see three significant data points: Child entity, Volunteer Entity, Classroom

Entity and Check-In Entity. In the previous 2 use cases I described the rules to some of these

entities.

Eighth rule,

8. A Classroom may be associated to many Check-ins; A Check-in is associated to one

classroom.

I created this structural rule based on the use case explanation that when a classroom is

setup the Volunteer may start the check-in process. The association between the

Page 13 of 58

Classroom and the check-in is optional, to leave room for the fact that a classroom is setup

before any child checks in. Once a child is checked in, they have an association with a

classroom.

Initial MyKids-CheckIn ERD

Here are the structural database rules I came up with, base on my 3 use cases, in Iteration 2.

1. Each Parent is associated with one Campus; Each Campus may be associated with many

Parents.

2. Each Event may be associated with many Campuses; Each Campus may be associated

with many Events.

3. Each Parent is associated to one or many children. A Child is associated with one or

many Parents.

4. A child may be associated to many events; An event may be associated to many

children.

5. Each Event may be associated with many classrooms; Each Classroom may be associated

with many Events.

6. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

7. A volunteer may be associated with one classroom; A classroom is associated to one or

many volunteers.

8. A Classroom may be associated to many Attendances; An Attendance is associated to

one classroom.

Here is the ERD I came up with for these rules, using Crow’s notation.

Page 14 of 58

Adding Specialization-Generalization to MyKids-CheckIn

I reviewed my existing use cases and noticed that the first use case I can depict a specialization

hierarchy.

New Family Registration Use Case

1. The parent/guardian visits the kiosk located where the app is installed.

2. The parent/guardian will click on the “Create New Family” option.

3. The parent/guardian selects the campus they usually attend to, to then proceed to

enter all the required information for them and the child/children and the new family is

created in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the

current service/event. If they select yes, the app will printout the badges that will be

used in the check-in and check-out process.

I realized that parent/guardian and child share many characteristics and have other

characteristics that are specific to a parent or child, which means that they should really be

treated as different type or person. I modified the use case, so it reflects it clearly.

New Family Registration Use Case (Updated)

1. The person visits the kiosk located where the app is installed.

2. The person will click on the “Create New Family” option.

3. The person selects the campus they usually attend to; the app will then ask them if the

person they are entering information for is a parent or a child. If it is a child they will

have to extra information, like medical alerts (e.g., allergies, special needs, medication,

etc.) or custodial information. Once all information is entered the new family is created

in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the

current service/event. If they select yes, the app will printout the badges that will be

used in the check-in and check-out process.

Now that #3 mentions that a parent/guardian and child are a person, I came up with a new

structural database rule to support the change to the use case as follows. “A person is a child

or a parent.” However, after reading through the other use cases, another type of person

comes in place and these are the volunteers. I added a new use case, so it would reflect the

volunteer type of person clearly.

Page 15 of 58

New Volunteer Registration Use Case (New)

1. The person visits the kiosk where the app is installed.

2. The person will click on the “Registration to Volunteer”.

3. The person selects the campus they usually attend to and enters all the required

information. Once all the information is entered, the Volunteer is created in the

database as a Volunteer with a pending status.

4. The volunteer will be contacted in a few days for finger printing for background

check. If the person passes the background check, he will be approved to volunteer,

and his status will be changed to approved.

Now that I have added this new use case “New Volunteer Registration Use Case” and with

the changes I made to “New Family Registration Use Case”, step #3, I created this new

structural database rule to support the change:

“Each person is a parent, child or volunteer, or several of these”

My database for now has only 3 types of person: parent, child and volunteer. For this

specialization-generalization rule, the relationship is totally complete. I have decided to have

it as a totally complete, because of the current purpose of the app: keep track of the child

check-in process for the different services. In the future, if this app is used for other events,

then I will change it to partially complete, since we can have a person registered that does

not fall in to any of the current types of person. A person can be a parent and a volunteer,

so the relationship is overlapping.

I have 9 structural database rules, including my original 8 plus the one I just created.

1. Each Parent is associated with one Campus; Each Campus may be associated with

many Parents.

2. Each Event may be associated with many Campuses; Each Campus may be

associated with many Events.

3. Each Parent is associated to one or many children. A Child is associated with one or

many Parents.

4. A child may be associated to many events; An event may be associated to many

children.

5. Each Event may be associated with many classrooms; Each Classroom may be

associated with many Events.

6. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

7. A volunteer may be associated with one classroom; A classroom is associated to one

or many volunteers.

8. A Classroom may be associated to many Attendances; An Attendance is associated

to one classroom.

9. Each person is a parent, child or volunteer, or several of these.

Page 16 of 58

I also added

I then added changes to my Initial ERD to support the following changes:

● Support the one additional structural database rule.

● The change I made to the structural database rule #5

● Change of the entity name “CheckIn” to “Attendance”

Page 17 of 58

Page 18 of 58

MyKids-CheckIn Relationship Classification and Associative Mapping

The associative relationships in my conceptual ERD are:

1. Campus/Person: A Campus may be associated with many Persons; Each Person is

associated to a Campus.

2. Campus/Event: A Campus may be associated with many Events; Each Event is

associated to a Campus.

3. Event/Event Group: An Event may be associated with many Event Groups; Each

Event Group is associated to an Event.

4. Event/Classroom: An Event may be associated with many Classrooms; A Classroom

may be associated to many Events.

5. Classroom/Person: A Classroom may be associated with many persons; A Person is

associated to a classroom.

6. Classroom/Attendance: A classroom may be associated to many Attendances; An

Attendance may be associated to a Classroom.

I changed the name of the entity Classroom to ClassroomAssignment to better describe its

purpose. I added 2 new entities, Building and Room, to be able to assign a specific room when

creating a new classroom assignment. I added a third entity, Registrant, that will have a

relationship with the Person who will register for an event. The reason I added this entity is

because a Person can register and not necessarily check in to a classroom, since they can change

their mind and leave. With this I can keep track of the persons who registered versus the ones

that attend.

Since Event/Classroom is a M:N relationship, it was necessary to create a bridge entity to

support the relationship. I named the entity EventSchedule.

Because of all these changes, new associative relationships appear which I describe below:

7. Building/Room: A building may be associated with many rooms; A room is

associated with one Building

8. Campus/Building: A Campus may be associated with many Building; A Building is

associated to one Campus.

9. Event/EventSchedule: An Event may be associated with many Event Schedules; An

Event Schedule is associated to one Event.

10. EventSchedule/ClassroomAssignment: An Event Schedule may be associated to

many Classroom Assignments; A Classroom Assignment is associated to one Event

Schedule.

11. EventSchedule/RegistrantAttendance; An Event Schedule may be associated to

many RegistrantAttendance; A RegistrantAttendance is associated to one Event

Schedule.

Page 19 of 58

I created surrogate keys for all my tables and used the datatype DECIMAL when creating my

primary keys.

Page 20 of 58

MyKids-CheckIn Specialization-Generalization Mapping

I have one specialization‐generalization relationships in my conceptual ERD, for the Person

entity. Here is my DBMS physical EERD with these relationships mapped into them.

Page 21 of 58

The additional entities under Person are Parent, Child and Volunteer, each of which have a

primary and foreign key of PersonId which reference the primary key of Person. With these

additional mappings, this DBMS physical now has all the relationships in the conceptual ERD.

MyKids-CheckIn Attributes

When I started adding the attributes for each one of my tables, I realized that the Registrant

table could be combined with the Attendance table. I removed these 2 tables and combined

them in the RegistrantAttendance table.

I also noticed, that my Parent and Volunteer subtype entities had common attributes, which

then I decided to create a subtype Adult as the supertype entity of the Volunteer subtype

entity.

Because of these changes my structural database rules changed as follows:

1. Each Person is associated with one Campus; Each Campus may be associated with

many Persons.

2. Each Event is associated with one Campus; Each Campus may be associated with

many Events.

3. Each Adult may be associated to one or many children. A Child is associated with one

or many Adults.

4. Each Event may be associated to many Event Schedule; An Event Schedule is

associated to one Event.

5. An Event Schedule may be associated to many Registrant Attendance; A Registrant

Attendance is associated to one Event Schedule.

6. A child may be associated to many Registrant Attendance; A Registrant Attendance

is associated to one child.

7. Each Event Schedule may be associated with many Classroom Assignments; Each

Classroom Assignment is associated with one Event Schedule.

8. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

9. A Volunteer may be associated with many Volunteer Assignments; A Volunteer

Assignment is associated to one Volunteer.

10. A Classroom Assignment may be associated to many Registrant Attendances; A

Registrant Attendance is associated to one Classroom Assignment.

11. An Event Group may be associated to many Classroom Assignment; A Classroom

Assignment is associated to one Event Group.

12. Each Campus may be associated to many Buildings; A Building is associated to one

Campus.

13. Each Building may be associated to many Rooms; A Room is associated to one

Building.

Page 22 of 58

14. A Room may be associated to many Classroom Assignments; A Classroom

Assignment is associated to one Room.

15. Each person is an adult or child.

16. Each adult is a volunteer, or none.

Below I will describe all my attributes with their datatypes for each table in my database and I

will explain the reason of my choices.

Table Attribute Datatype Reasoning
Building Name VARCHAR(100) Every building has a name which

acts like the identifier for the
building when the user is looking it
up in the app. I allow for up to 100
characters.

Building Description VARCHAR(1000) Every building may have a
description. People may want to
describe the building more than just
with the name. I allow for 1,000
characters so that people can type
in something long if they need to.

Building NumberFloor DECIMAL(2) Every building has a number of
floors. I allow for up to 2 digit
number.

Building Notes VARCHAR(1000) Every building may have notes.
People may want to add extra notes
of the building.

Building Active DECIMAL(1) This flag will let the user Inactivate a
building that we no longer have.
The values it will have will be 1 for
Active and 0 for inactive.

Room Name VARCHAR(100) Every room has a name which acts
like the identifier of the room and
how it will be searched in the app. I
allow for up to 100 characters.
Example:
2-year-old room “A”
2-year-old room “B”

Room RoomNumber VARCHAR(10) Every room has a room number. I
created it as a VARCHAR(10) since
some room numbers may be
alphanumeric and I allow up to 10
characters.

Room Capacity DECIMAL(5) Each room has a number of people
capacity. I allow up to 5-digit
number which is 99999 which gives
enough space in case something
extraordinary happens.

Room Floor DECIMAL(2) Every room has a floor number
where it is located. I allow up to 2-
digit number.

Room Note VARCHAR(1000) Every room may have notes. In
some cases, people would like to
add notes like, this room has a
projector or bathroom, or if

Page 23 of 58

volunteers should be very careful
with specific items in the room, etc.

Room Active DECIMAL(1) This flag will let the user Inactivate a
room that we no longer have. The
values it will have will be 1 for
Active and 0 for inactive.

Campus Name VARCHAR(255) Every campus has a name that
serves as the identifier of the
campus. I allow up to 255
characters.

Campus Addess1 VARCHAR(255) Every campus has an address which
is the street. I allow up to 255
characters.

Campus Address2 VARCHAR(255) Every campus may have extra
information on the address. I allow
up to 255 characters.

Campus City VARCHAR(255) Every campus is in a city. I allow up
to 255 characters.

Campus State VARCHAR(2) Every campus is in a state. I allow 2
characters.

Campus PostalCode VARCHAR(10) Every campus has a postal code. I
allow up to 10 characters.

Campus Active DECIMAL(1) This flag will let the user Inactivate a
campus that we no longer have.
The values it will have will be 1 for
Active and 0 for inactive.

Event Name VARCHAR(255) Every event has a name that acts
like an identifier and how people
will search it in the app. I allow up
to 255 characters.

Event Description VARCHAR(1000) Every event may have a detailed
description of the event. I allow up
to 1000 characters.

Event RegistrationCheckInType CHAR(1) Every event has a type of check in,
whether a registrant checks in the
kiosk with their phone number (P)
or with their ID (I). The 2 distinct
values this attribute will have are ‘P’
and ‘I’. This helps to setup the kiosk
with the correct screen.

Event Active DECIMAL(1) This flag will let the user Inactivate
an event that we no longer have.
The values it will have will be 1 for
Active and 0 for inactive.

EventSchedule EventStartDate DATETIME Each event scheduled has a start
date and time.

EventSchedule EventEndDate DATETIME Each event scheduled has an end
date and time.

EventSchedule RegistrationStartDate DATETIME Each event schedule has a
registration start date and time. For
example, and Event is scheduled for
the Sunday 9:00 am service, but we
can start registering kids starting at
8:30 am so the app should be
available to start generating the
badges at this time.

EventSchedule RegistrationEndDate DATETIME Each event schedule has a
registration end date and time. For

Page 24 of 58

example, for the 9:00 am service
the parents can start printing the
badges (registering) at 8:30 am and
a parent that comes in late can print
out badges up until 10: 00 am.

EventSchedule CreatedDate DATETIME Each event schedule has a created
date.

EventGroup Name VARCHAR(255) Each event group has a name the
will be like the identifier. I allow up
to 255 characters. Example:
0 to 3-month-old
4 to 6-month-old
7 to 12-month-old
13 to 24-month-old
2-year-old
3-year-old
PreK 4
Kindergarten, etc.

EventGroup Description VARCHAR(1000) Each event group may have a
description. I allow up to 1000
characters

EventGroup AgeStartYear DECIMAL(4,2) Each event group has an age range.
The app will convert it into year’s
even if it is months. This will be
used by the app to suggest what
age group a child should check in to.
I allow up 2 digit and 2 decimal
points.

EventGroup AgeEndYear DECIMAL(2) Each event group has an age range.
The app will convert it into year’s
even if it is months. This will be
used by the app to suggest what
age group a child should check in to.
I allow up 2 digit and 2 decimal
points.

EventGroup Active DECIMAL(1) This flag will let the user Inactivate
an event group that we no longer
have. The values it will have will be
1 for Active and 0 for inactive.

ClassroomAssignment AssignmentDate DATETIME Every classroom assignment will
have an assignment date and time
which is the date the class was
opened to start checking in.

ClassroomAssignment AssignmentById DECIMAL(12) Every classroom assignment will
have an assignmentById which is
the volunteer that setup the
classroom in the app.

ClassroomAssignment Notes VARCHAR(1000) Every classroom assignment may
have notes, that could be used by
the team leader volunteer or by the
teacher volunteers.

RegistrantAttendance PickupCode VARCHAR(10) Every registrant has a pickup code
that the app will generate. I allow
up to 10 characters.

RegistrantAttendance RegistrationDate DATETIME Every registrant (child) has a
registration date when parents sign
them in in the kiosk to printout
badges.

Page 25 of 58

RegistrantAttendance RegisteredById DECIMAL(12) Every registrant is registered by the
parents, this attribute will save the
parent id.

RegistrantAttendance CheckInDate DATETIME Every registrant may have a check-
in date and time when they are
checked in to their classrooms.

RegistrantAttendance CheckInById DECIMAL(12) Every registrant may have a
volunteer that checks them in to
the classroom.

RegistrantAttendance TypeCheckIn CHAR(1) Every registrant may have been
checked-in with scanning QR code
or manually. The attribute values
would be ‘C’ for QR code or ‘M’ for
manual check in.

RegistrantAttendance CheckOutDate DATETIME Every registrant may have a check
out date and time when they are
checked out.

RegistrantAttendance CheckOutById DECIMAL(12) Every registrant may have a
volunteer that checked them out.

RegistrantAttendance TypeCheckOut CHAR(1) Every registrant may have been
checked-out with scanning QR code
or manually. The attribute values
would be ‘C’ for QR code or ‘M’ for
manual check out.

VolunteerAssignment AssignmentDate DATETIME Every volunteer assignment has an
assignment date and time to their
classroom.

VolunteerAssignment AssigmentById DECIMAL(12) Every volunteer assignment is done
by a team leader volunteer.

Person FirstName VARCHAR(64) Every person has a first name. I
allow up to 64 characters.

Person MiddleName VARCHAR(64) Every person may have a middle
name. I allow up to 64 characters.

Person LastName VARCHAR(64) Every person has a last name. I
allow up to 64 characters.

Person Gender CHAR(1) Every person has a gender. ‘F’ for
female and ‘M’ for male. I allow one
character.

Person DateOfBirth DATE Each person has a date of birth.

Person EmailAddress VARCHAR(255) Each person may have an email
address.

Person HomePhone VARCHAR(10) Each person may have a home
phone.

Person Address1 VARCHAR(255) Each person has an address 1.

Person Address2 VARCHAR(255) Each person may have an address 2.

Person City VARCHAR(255) Each person lives in a city.

Person State VARCHAR(2) Each person lives in a state.

Person PostalCode VARCHAR(10) Each person has a postal code.

Person CreatedDate DATETIME This is the date and time when the
record was created in the table.

Person ModifiedDate DATETIME This is the date and time the record
was last modified.

Person PersonType CHAR(1) This is the subtype discriminator: It
will have ‘A’ for adult and ‘C’ for
child.

Person Active DECIMAL(1) This is a flag that will be used to
inactivate a person.

Page 26 of 58

Adult UserName VARCHAR(64) Every adult has a username. I allow
up to 64 characters.

Adult EncryptedPassword VARCHAR(20) Every adult has an encrypted
password that can be used to log in
to the app.

Adult MobilePhone VARCHAR(10) Every adult may have a mobile
phone.

Adult MaritalStatus CHAR(1) Every adult has a marital status.
● Divorce

● Married

● Partnered

● Separated

● Single

● Widowed

Adult GovIssuedID VARCHAR(20) Every adult has a government
issued Id. I allow up to 20
characters.

Adult TypeGovIssuedID CHAR(1) Every adult’s government issued id
can be a state id or a driver’s
license. Attribute values: ‘S’ for
state id or ‘D’ for driver’s license.

Child NickName VARCHAR(64) Every child may have a specific
name they are called at home. I
allow up to 64 characters.

Child Allegries VARCHAR(1000) Every child may have allergies. I
allow up to 1000 characters.

Child Conditions VARCHAR(1000) Every child may have some medical
conditions. I allow up to 1000
characters.

Child CustodialInfo VARCHAR(1000) Every child may have specific
custodial information. I allow up to
1000 characters.

Volunteer BackgroundCheckStatus CHAR(1) Every volunteer must pass a
background check. There are 3
different status for the results:

● Clear

● Consider

● Pending

Volunteer BackgroundCheckDate DATETIME Every volunteer must have the date
of his last background check since
they have to repeat it every 5 or 7
years.

Volunteer VolunteerType CHAR(1) Volunteers can be categorized in:
● Teachers

● Team Leaders

● Admin

Volunteer Active DECIMAL(1) A volunteer has a status of ‘Active’
to volunteer. This flag will be used
to Inactivate a volunteer.

ParentChild ChildId DECIMAL(12) Every child has a parent. And every
Parent has a child.

ParentChild ChildRelationship VARCHAR(20) Every child has a specific
relationship with the parent. They
can be

Page 27 of 58

● Foster Child

● Guest Child

● Minor Child

Page 28 of 58

Here is my ERD with the attributes included.

Page 29 of 58

MyKids-CheckIn Normalization

I notice only one place where there is redundancy in my physical ERD, and that is with the address

information in the Person entity. If different people are registered and the are all living in the

same address, this information is redundant. Here is my ERD with the address information

normalized.

Page 30 of 58

Below are my structural database rules modified to reflect the new entities. The new ones are

italicized.

1. Each Person is associated with one Campus; Each Campus may be associated with

many Persons.

2. Each Event is associated with one Campus; Each Campus may be associated with

many Events.

3. Each Adult may be associated to one or many children. A Child is associated with one

or many Adults.

4. Each Event may be associated to many Event Schedule; An Event Schedule is

associated to one Event.

5. An Event Schedule may be associated to many Registrant Attendance; A Registrant

Attendance is associated to one Event Schedule.

6. A Person may be associated to many Registrant Attendance; A Registrant

Attendance is associated to one Person.

7. Each Event Schedule may be associated with many Classroom Assignments; Each

Classroom Assignment is associated with one Event Schedule.

8. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

9. A Volunteer may be associated with many Volunteer Assignments; A Volunteer

Assignment is associated to one Volunteer.

10. A Classroom Assignment may be associated to many Registrant Attendances; A

Registrant Attendance is associated to one Classroom Assignment.

11. An Event Group may be associated to many Classroom Assignment; A Classroom

Assignment is associated to one Event Group.

12. Each Campus may be associated to many Buildings; A Building is associated to one

Campus.

13. Each Building may be associated to many Rooms; A Room is associated to one

Building.

14. A Room may be associated to many Classroom Assignments; A Classroom

Assignment is associated to one Room.

15. Each person is an adult or child.

16. Each adult is a volunteer, or none.

17. A person lives at an address; Each address is associated with one or many persons.

18. Each address has a state; Each state may be associated with many addresses.

Below is my new conceptual ERD to reflect the new entities.

Page 31 of 58

Page 32 of 58

MyKids-CheckIn Create Script

I created a script file named SQLScript.sql which includes all the DROP TABLE commands at the

top s that script is rerunnable and then I added the CREATE TABLE command with all the

columns and constraints. I just included a few screens shots of the scripts and the execution.

Drop statement for all the tables and create table State and Address.

Create table Person Supertype and Adult subtype

Page 33 of 58

MyKids-CheckIn Indexes

Below is a table identifying each foreign key column that I will create an index for, whether the

index should be unique or not, and why.

Column Unique? Description

Address.StateId Not unique The FK in Address
referencing State is not
unique because there
can be many addresses
with the same state.

Person.AddressId Not unique The FK in Person
referencing Address is
not unique because
there can be many
person with the same
address.

ParentChild.ParentId Not unique The FK in ParentChild
referencing Adult is not
unique because there
can be many child of the
same Adult.

ParentChild.ChildId Not unique The FK in ParentChild
referencing Child is not
unique because there
can be many Parents of
the same Child.

Page 34 of 58

Campus.StateId Not unique The FK in Campus
referencing State is not
unique because there
can be many Campuses
with the same state.

Building.CampusId Not unique The FK in Building
referencing Campus is
not unique because
there can be many
Buildings with the same
campus.

Room.BuildingId Not unique The FK in Room
referencing Building is
not unique because
there can be many
rooms in the same
building.

Event.CampusId Not unique The FK in Event
referencing Campus is
not unique because
there can be many
Events in the same
campus.

EventSchedule.EventId Not unique The FK in EventSchedule
referencing Event is not
unique because there
can be many
EventSchedule for the
same event.

EventGroup.EventId Not unique The FK in EventGroup
referencing Event is not
unique because there
can be many EventGroup
for the same Event.

ClassroomAssignment.EventScheduleId Not unique The FK in
ClassroomAssignment
referencing
EventSchedule is not
unique because there
can be many
ClassroomAssignments
for the same
EventSchedule.

Page 35 of 58

ClassroomAssignment.EventGroupId Not unique The FK in
ClassroomAssignment
referencing EventGroup
is not unique because
there can be many
ClassroomAssignments
for the same
EventGroup.

ClassroomAssignment.RoomId Not unique The FK in
ClassroomAssignment
referencing Room is not
unique because there
can be many
ClassroomAssignments
with the same room.

ClassroomAssignment.AssignmentById Not unique The FK in
ClassroomAssignment
referencing Volunteer is
not unique because
there can be many
ClassroomAssignments
with the same volunteer
Id.

VolunteerAssignment.PersonId Not unique The FK in
VolunteerAssignment
referencing Volunteer is
not unique because
there can be many
VolunteerAssignment
with the same person(
volunteer).

VolunteerAssignment.ClassroomId Not unique The FK in
VolunteerAssignment
referencing
ClassroomAssignment is
not unique because
there can be many
VolunteerAssignment for
the same
ClassroomAssignment.

VolunteerAssignment.AssignmentById Not unique The FK in
VolunteerAssignment
referencing Volunteer is

Page 36 of 58

not unique because
there can be many
VolunteerAssignment for
the same volunteer id.

RegistrantAttendance.EventScheduleId Not unique The FK in
RegistrantAttendance
referencing
EventSchedule is not
unique because there
can be many
RegistrantAttendance for
the same EventSchedule.

RegistrantAttendance.PersonId Not unique The FK in
RegistrantAttendance
referencing Person is not
unique because there
can be many
RegistrantAttendance for
the same Person.

RegistrantAttendance.ClassroomId Not unique The FK in
RegistrantAttendance
referencing
ClassroomAssignment is
not unique because
there can be many
RegistrantAttendance for
the same
ClassroomAssignment.

RegistrantAttendance.RegisteredById Not unique The FK in
RegistrantAttendance
referencing Person is not
unique because there
can be many
RegistrantAttendance for
the same Person.

RegistrantAttendance.CheckInById Not unique The FK in
RegistrantAttendance
referencing Volunteer is
not unique because
there can be many
RegistrantAttendance for
the same Volunteer.

Page 37 of 58

RegistrantAttendance.CheckOutById Not unique The FK in
RegistrantAttendance
referencing Volunteer is
not unique because
there can be many
RegistrantAttendance for
the same Volunteer.

I also found 9 query driven indexes by predicting what columns will be commonly queried.

In the following table I will indicate the name of the column and the reason why I considered

necessary to index them.

Column Unique? Reason

Person.HomePhone

Not unique When parents register a child, they
will have to search their child in the
app by the phone number.

EventSchedule.EventStartDate

Not unique This field will be used in reports and
also when a child is being registered
it will be used to pull current events.

EventSchedule.EventEndDate

Not unique This field will be used in reports and
also when a child is being registered
it will be used to pull current events.

EventGgroup.AgeStartYear

Not unique When a child is registered to an
event the app will suggest the age
group a child should check in; this
field indicates the start age range
value.

EventGgroup.AgeEndYear

Not unique When a child is registered to an
event the app will suggest the age
group a child should check in; this
field indicates the End age range
value.

RegistrantAttendance.PickupCode

Not unique When a child is either checked-in or
checked-out the app has to scan the
QR code which contains the
PickupCode.

RegistrantAttendance.RegistrationDate

Not unique When a child is checked-out the app
has to scan the QR code which
contains the PickupCode and it will
also use the registration Date, and
classroom to validate that they are
checking out the correct child.

Page 38 of 58

EventSchedule.RegistrationStartDate Not unique When a parent registers their child
in a specific event the app will query
the EventSchedule table asking if the
current time is in between the
Registration StartDate and
Registration End date.

EventSchedule.RegistrationEndDate Not unique When a parent registers their child
in a specific event the app will query
the EventSchedule table asking if the
current time is in between the
Registration StartDate and
Registration End date.

MyKids-CheckIn Index Creation

Here is a screenshot demonstrating creation of all my foreign key indexes and the query driven

indexes. I added the CREATE INDEX commands to the end of the SQLScript.sql file.

Page 39 of 58

MyKids-CheckIn Transactions

The first use case for MyKids-CheckIn is the “New Family Registration” use case listed below.

New Family Registration Use Case

1. The person visits the kiosk located where the app is installed.

2. The person will click on the “Create New Family” option.

3. The person selects the campus they usually attend to; the app will then ask them if the

person they are entering information for is a parent or a child. If it is a child they will

have to extra information, like medical alerts (e.g., allergies, special needs, medication,

etc.) or custodial information. Once all information is entered the new family is created

in the database.

4. The app will ask the parent/guardian if they would like to print out badges for the

current service/event. If they select yes, the app will printout the badges that will be

used in the check-in and check-out process.

For this use case, I will implement a transaction that creates new family record, using SQL

Server. I created 2 stored procedures: “addNewParent”, which adds a new parent and

“addNewChild”, that will be used to add a child or children a parent may have.

Here are screenshots of my 2 stored procedure definition.

Page 40 of 58

Stored Procedure: “addNewParent”

I gave it parameters that correspond to the Address, Person and Adult

The column Person.CreatedDate is always the current date, for which I added a default constraint

for this column which will use the getdate() function from SQL Server so I do not need a

parameter for it. I also do not need a parameter for Person .PersonType since this procedure will

always be used to add a new parent so I hardcode the character ‘A’. I added a default constraint

to Adult.IsVolunteer of a value of 0. Since this procedure will not be used to add a volunteer, I

will insert the Adult data using the default value.

The primary keys for Address and Person table are Identity fields, which Is why do not need to

pass these values

 Inside the stored procedure, there are 3 insert statements to insert into the 3 respective tables.

Here is my screenshot of my stored procedure execution.

Page 41 of 58

Stored Procedure: “addNewChild”

 I gave it parameters that correspond to the Person, Child and ParentChild tables.

Inside the stored procedure, there are 3 insert statements to insert into the 3 respective tables.

Here is a screenshot of my stored procedure execution.

Page 42 of 58

The second use case for MyKids-CheckIn is the “New Volunteer Registration” use case listed

below.

New Volunteer Registration Use Case

1. The person visits the kiosk where the app is installed.

2. The person will click on the “Registration to Volunteer”.

3. The person selects the campus they usually attend to and enters all the required

information. Once all the information is entered, the Volunteer is created in the

database as a Volunteer with a pending status.

4. The volunteer will be contacted in a few days for finger printing for background

check. If the person passes the background check, he will be approved to volunteer,

and his status will be changed to approved.

For this use case, I will implement a transaction that creates new volunteer record, using SQL

Server. I created a stored procedure: “addNewVolunteer”, which adds a new volunteer.

Here is a screenshot of my stored procedure definition.

Stored Procedure: “addNewVolunteer”

I gave it parameters that correspond to the Address, Person, Adult and Volunteer.

The column Person.CreatedDate is always the current date, for which I added a default constraint

for this column which will use the getdate() function from SQL Server so I do not need a

Page 43 of 58

parameter for it. I also do not need a parameter for Person .PersonType since this procedure will

always be used to add a new volunteer so I hardcode the character ‘A’. I added a default

constraint to Adult.IsVolunteer of a value of 0. Since this procedure will be used to add a

volunteer I will assign the value of 1.

The primary keys for Address and Person table are Identity fields, which Is why do not need to

pass these values

 Inside the stored procedure, there are 4 insert statements to insert into the 4 respective tables.

Here is a screenshot of my stored procedure execution.

The third use case for MyKids-CheckIn is the “Setting up classrooms for check-in” use case listed

below.

Setting up classrooms for check in Use Case

1. The team leader accesses the app from their tablets and signs in with their credentials.

2. The team leader will select the service/event and clicks on the “Open Classroom”

option.

3. The team leader selects the Event and the event group (e.g. age group) with the

classroom and assigns the teacher/volunteers.

For this use case, I will implement a transaction that creates new classroom assignment record,

using SQL Server. I created a stored procedure: “addClassroomAssignment”.

Here is a screenshot of my stored procedure definition.

Page 44 of 58

Inside the stored procedure, there are 2 insert statements to insert into the 2 respective tables.

Here is a screenshot of my stored procedure execution.

Page 45 of 58

MyKids-CheckIn History

In reviewing my DBMS physical ERD, one piece of data that would obviously benefit from a

historical record is the volunteer’s background check date change in the Volunteers’ table. Such a

history would help me determine the number of background checks done in a specific period. My

new structural database rule is: Each volunteer may have many background check date changes;

each back-ground check date change is for a volunteer.

 My updated conceptual ERD and structural rules including my new database rule are below:

Page 46 of 58

Below are my structural database rules modified to reflect the new entities. The new ones are

italicized.

1. Each Person is associated with one Campus; Each Campus may be associated with

many Persons.

2. Each Event is associated with one Campus; Each Campus may be associated with

many Events.

3. Each Adult may be associated to one or many children. A Child is associated with one

or many Adults.

4. Each Event may be associated to many Event Schedule; An Event Schedule is

associated to one Event.

5. An Event Schedule may be associated to many Registrant Attendance; A Registrant

Attendance is associated to one Event Schedule.

6. A Person may be associated to many Registrant Attendance; A Registrant

Attendance is associated to one Person.

7. Each Event Schedule may be associated with many Classroom Assignments; Each

Classroom Assignment is associated with one Event Schedule.

8. Each Event may be associated to many Event Groups; An Event Group is associated to

only one Event.

9. A Volunteer may be associated with many Volunteer Assignments; A Volunteer

Assignment is associated to one Volunteer.

10. A Classroom Assignment may be associated to many Registrant Attendances; A

Registrant Attendance is associated to one Classroom Assignment.

11. An Event Group may be associated to many Classroom Assignment; A Classroom

Assignment is associated to one Event Group.

12. Each Campus may be associated to many Buildings; A Building is associated to one

Campus.

13. Each Building may be associated to many Rooms; A Room is associated to one

Building.

14. A Room may be associated to many Classroom Assignments; A Classroom

Assignment is associated to one Room.

15. Each person is an adult or child.

16. Each adult is a volunteer, or none.

17. A person lives at an address; Each address is associated with one or many persons.

18. Each address has a state; Each state may be associated with many addresses.

19. Each volunteer may have many background check date changes; each back-ground

check date change is for a volunteer.

Page 47 of 58

I added the BackgroundCheckChange entity and related it to Volunteer table. My updated

DBMS physical ERD is below.

The BackgroundCheckChange entity is present and linked to Volunteer entity. Below are the

attributes I added and why.

Page 48 of 58

Attribute Description

BackgroundCheckChangeId This is the primary key of the history table. It

is a DECIMAL(12) to allow many values.

OldBGChangeDate This is the BackgroundCheckDate before the

change. The data type mirrors the

BackgroundCheckDate datatype in the

Volunteer table.

NewBGChangeDate This is the BackgrounCheckDate after the

changes. The data type mirroes the

BackgroundChackDate data type in the

volunteer table.

PersonId This is a foreign key to the Volunteer table, a

reference to the Volunteer that had the

change in the backgroundcheckdate.

ChangeDate This is the date the nacground chec change

occurred, with a DATETIME data type.

Here is a screenshot of my table creation, which has all of the same attributes and datatypes as

indicated in the DBMS physical ERD.

Page 49 of 58

Page 50 of 58

Here is a screenshot of my trigger creation which will maintain the BackgroundCheckChange

table.

Code Description
CREATE TRIGGER
BackgroundCheckChangeTrigger
ON Volunteer
AFTER UPDATE

This starts the definition of the trigger and
names it “BackgroundCheckChangeTrigger”.
The trigger is linked to the Volunteer table
and is executed after any update to that
table.

AS
BEGIN

This is the part of the syntax starting the
trigger block.

DECLARE @OldBGCheckDate DATETIME = (SELECT
BackgroundCheckDate FROM DELETED);
DECLARE @NewBGCheckDate DATETIME = (SELECT
BackgroundCheckDate FROM INSERTED);
DECLARE @PersonId DECIMAL(12) = (SELECT
PersonId FROM INSERTED);

This saves the old and new background check
date referencing the DELETED and INSERTED
pseudo tables, respectively.

IF (@OldBGCheckDate <> @NewBGCheckDate) This check ensures action is only taken if the
background check date has been updated.

INSERT INTO
BackgroundCheckChange(OldBGChangeDate,
NewBGChangeDate, PersonId)

This inserts the record into the
BackgroundCheckChange table. The primary
ket is set by the IDENTITY. The old and new
BGCheckdates are used from the variables.

Page 51 of 58

 VALUES(@OldBGCheckDate,
@NewBGCheckDate, @PersonId);

The PersonId is obtained from the INSERTED
pseudo table. The ChangeDate field has a
default constraint that is assigned the
getdate() value.

END; This ends the trigger definition.

First, I select all the records from my Volunteer table.

Next, I will update the BackgroundCheckDate of the PersonId 4.

Last, I verify that the BackgroundCheckChange table has a record for tha change done to the

Volunteer table.

Page 52 of 58

MyKids-CheckIn Question and Query

Question #1

Here is a question useful for the Childrens Minsitry: How many classrooms by age group were

opened for the Event Calvary Kids Check-In in the month of March of 2019 for the 6:00pm

church service?

First, I explain why this question is useful.

The answer can be used to determine how many Volunteers we need to recruit for certain age

groups on a specific service. This will help the team leaders be better prepared with the required

of volunteers. Here is a screenshot of the query I use.

Page 53 of 58

To get the results, I join the EventSchedule to the EventGroup table, and limit the results to those

with the EventId equal to 1 (that corresponds to the “Calvary Kids Check-In” event) and which

EventStartDate was in the month of March. I then do a LEFT OUTER JOIN with the

ClassroomAssignment table which has the records of my classes opened for a specific

EventSchedule and EventGroup (age group). I use a LEFT OUTER JOIN to be able to get all

EventGoups, even if there were no classes opened for a specific EventGroup. I order the results

by AgeStartYear field from the EventGroup table. To help prove that the query is working

properly, I show the full contents of the ClassroomAssignment and EventSchedule and

EventGroup tables with a simple query:

Page 54 of 58

Upon inspection, you see that there are 43 ClassroomAssignment rows in my database. I
ordererd the records by Time in descendant order so the ones at 6pm would be at the top for
better visibility. There are only 20 classrooms assignments for the month of March at 6:00pm. If
you add up the numbers of my Total_Num_Classrooms_Opened it will equal 20. So as is
demonstrated, the query appears to be returning the correct results based upon the question.

Question #2

Here is another question useful for the Childrens Minsitry: How many children and available

seats are, for each opened classroom by age group for the Event Calvary Kids Check-In on

03/03/2019 at the 11:00 am church service?

First, I explain why this question is useful.

The answer can be used to determine what classrooms have been opened for a specific age group

and also to see a total number of children that have checked in a classroom and also the available

seats so far. This way the team leaders will know quickly which classrooms are getting filled up

quickly so they can start preparing a new classroom for that specific age group.

Here is a screenshot of the query I use.

Page 55 of 58

To get the results I joined the EventSchedule, EventGroup, ClassroomAssignment, Room and
RegistrantAttendance tables, and limit the results to those with the EventId equal to 1 (that
corresponds to the “Calvary Kids Check-In” event) and which EventStartDate equals 03/03/2019
at 11:00 am. I then do a LEFT OUTER JOIN with the ClassroomAssignment table which has the
records of my classes opened for a specific EventSchedule and EventGroup (age group). I use a
LEFT OUTER JOIN to be able to get all EventGoups, even if there were no classes opened for a
specific EventGroup. I then join with the room to be able to get the room number and finally I
join with the RegstrantAttendance table which has the records of all the children registered in
the event. I order the results by AgeStartYear field from the EventGroup table and RoomNumber
from the Room table.

To help prove that the query is working properly, I first added more registrants to the
RegistrantAttendance table and I show the full contents of the ClassroomAssignment and
EventSchedule, EventGroup, Room and RegistrantAttendance tables with a simple query:

Page 56 of 58

Upon inspection, you see that there are 75 ClassroomAssignment rows in my database. I ordered
the records by EventStartDate. There are only 25 records for the EventStartDate 03/03/2019 at
11:00 am. If you add up the numbers of my Total_Kids it will equal 25. So as is demonstrated,
the query appears to be returning the correct results based upon the question.

Question #3

A useful question from the BackgroundCheckChange history table is: How many volunteer’s
background check date change for specific period by the month? Since background checks have
to be repeated every 7 years, this will help plan ahead of time. In order to provide more data
for this, I changed some backgroundcheckDates. Here is what the BackgroundCheckChange
table looks like after these changes.

Page 57 of 58

There are a total of 4 records but 2 were changed in the month of April, 1 in March and 1 in
February. Here is a screen shot of my query and the results:

I use the DATENAME function to display the month name and I use the Month function to use it
in my ORDER BY. Since I am running this query for the year 2019, I use the function YEAR to
specify just the year 2019 in the where clause.

MyKids-CheckIn Summary and Reflection

My database is for an app that will automate the parent/child registration process and the check-
in and check-out process for the Saturday and Sunday services at my church. When I talked to
the people involved in this process, I noticed that the church would want this same or similar
check-in process for all events. They have different types of events, for the different types of
ministries the church offers. After thinking through, I realized this may become a big database
with a lot of business rules involved, which is why I have narrow it down to the Children’s ministry
check-in process.

This week I was able to identify the structural database rules, based on the use cases; with these
rules it was so easy to identify all the entities involved and the relationships between them.
I made minor changes to the use cases so that it would be clearer to recognize the entities. I was
able to identify the following entities: Campus, Parent, Child, Event, Event Group, Classroom,
Volunteer and Check-in, as well as relationships between them.

This exercise helped me understand the importance of well-defined business rules in an
organization, which is an important part when designing a database.

Page 58 of 58

 Week 3 Summary and Reflection Update

This week, I have done many changes to my project. I changed 2 uses cases to be able to reflect
the Specialization-Generalization Hierarchy. I also made changes to the names of a few entities
to better describe its purpose. I change the relation I had of EventGroup/Classroom to
Event/Classroom. I also created a bridge entity to eliminate the M:N relationship between
Event/Classroom.

After making these changes, creating the DBMS Physical EERD was not difficult. I can honestly
say that I feel much better this week with how my database design looks. At the beginning of
the course I was a little bit worried that this project was going to have to many tables and it was
going to be too complex, but after this week, I am excited that this will not be my case.

Week 4 Summary and Reflection Update

I spent more time working on this iteration compared to the last 3. While identifying all the
possible attributes that my entities have, I realized I had new entities to create and others that
were not necessary. Although it was a lot of work, I am happy with what I have accomplished
so far, and to finally see the database I had in paper, implemented in SQL server.

Week 5 Summary and Reflection Update

It’s incredible how I can finally see my database fully functioning. It really took a lot of time
putting together the scripts and populating my tables with somewhat real data to be able to
generate correct results with my queries. Although it was a lot of work, I can say I have really
enjoyed this project. While working on it I have come up with more ideas and changes that
hopefully I will be able to complete as a personal goal.

